ERLANG

Megaco/H.248

Copyright © 2000-2021 Ericsson AB. All Rights Reserved.
Megaco/H.248 4.1

september 27, 2021

Copyright © 2000-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

september 27, 2021

1.1 Introduction

1 Megaco/H.248 Users Guide

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

1.1 Introduction

Megaco/H.248 is a protocol for control of elements in a physically decomposed multimedia gateway, enabling
separation of call control from media conversion. A Media Gateway Controller (MGC) controls one or more Media
Gateways (MG).

This version of the stack supports version 1, 2 and 3 as defined by:

e version1- RFC 3525 and H.248-1G (v10-v13)
e version 2 - draft-ietf-megaco-h248v2-04 & H.248.1 v2 Corrigendum 1 (03/2004)
e version 3 - Full version 3 asdefined by ITU H.248.1 (09/2005) (including segments)

The semantics of the protocol hasjointly been defined by two standardization bodies:

e |ETF - which calls the protocol Megaco
e |ITU - which calls the protocol H.248

1.1.1 Scope and Purpose

This manual describes the Megaco application, as a component of the Erlang/Open Telecom Platform devel opment
environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisitesis required for understanding the material in the Megaco User's Guide:

e thebasics of the Megaco/H.248 protocol
» thebasics of the Abstract Syntax Notation One (ASN.1)
« familiarity with the Erlang system and Erlang programming

The application requires Erlang/OTP release R10B or later.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Megaco User's Guide contains the following chapters:

« Chapter 2: "Architecture" describes the architecture and typical usage of the application.

* Chapter 3: "Internal form and itsencodings' describestheinternal form of Megaco/H.248 messagesand itsvarious
encodings.

e Chapter 4: "Transport mechanisms" describes how different mechanisms can be used to transport the Megaco/
H.248 messages.

» Chapter 5: "Debugging" describes tracing and debugging.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 1

1.2 Architecture

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Megaco/H.248 and about the Erlang/OTP
development system:

e version 1, RFC 3525

e oldversion 1, RFC 3015

* Version 2Corrigendum 1

e version 2, draft-ietf-megaco-h248v2-04

e H.248.1version 3

* the ASN.1 application User's Guide

* the Megaco application Reference Manual

» Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Architecture

1.2.1 Network view

Megaco is a (master/slave) protocol for control of gateway functions at the edge of the packet network. Examples
of thisis IP-PSTN trunking gateways and analog line gateways. The main function of Megaco is to allow gateway
decomposition into a call agent (call control) part (known as Media Gateway Controller, MGC) - master, and an
gateway interface part (known as Media Gateway, MG) - dave. The MG has no call control knowledge and only
handle making the connections and simple configurations.

SIP and H.323 are peer-to-peer protocols for call control (vaid only for some of the protocols within H.323), or
more generally multi-media session protocols. They both operate at a different level (call control) from Megaco in a
decomposed network, and are therefor not aware of whether or not Megaco is being used underneath.

2 | Ericsson AB. All Rights Reserved.: Megaco/H.248

href
href
href
href
href

1.2 Architecture

.'ﬁ'.
P 557 etc. —
|| || M 3 I'§| r'IEi|Ir'I'§I GatE'W'a_':."
|I |
| |
| |
|| || Sigran
Call Agent
PSTH S (N B
ATH ' :
ahe. : '
: Media Gateway Controller :
|| || : Megacum 248 I
I| | ! Prutucul
II II : :
| | 1
|I I| 1 :
\ U Trunks o Trunking N Lines g . . T
Vo e— | NAedia Gateway Media Galeway
IP Phone
et Media Gateway
.é‘ -é‘ " B E N

Figure 2.1: Network architecture

Megaco and peer protocols are complementary in nature and entirely compatible within the same system. At asystem
level, Megaco allows for

» overdl network cost and performance optimization

* protection of investment by isolation of changes at the call control layer

» freedom to geographically distribute both call function and gateway function
e adaption of legacy equipment

1.2.2 General

This Erlang/OTP application supplies a framework for building applications that needs to utilize the Megaco/H.248
protocol.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 3

1.2 Architecture

We have introduced the term "user" as a generic term for either an MG or an MGC, since most of the functionality
we support, is common for both MG's and MGC's. A (local) user may be configured in various ways and it may
establish any number of connections to its counterpart, the remote user. Once a connection has been established, the
connection is supervised and it may be used for the purpose of sending messages. N.B. according to the standard an
MG is connected to at most one MGC, while an MGC may be connected to any number of MG's.

For the purpose of managing "virtual MG's', one Erlang node may host any number of MG's. In fact it may host amix
of MG'sand MGC's. Y ou may say that an Erlang node may host any number of "users".

The protocol engine uses callback modules to handle various things:

e encoding callback modules - handles the encoding and decoding of messages. Several modules for handling
different encodings are included, such as ASN.1 BER, pretty well indented text, compact text and some others.
Others may be written by you.

» trangport callback modules - handles sending and receiving of messages. Transport modulesfor TCP/IPand UDP/
IP areincluded and others may be written by you.

e user calback modules - the actual implementation of an MG or MGC. Most of the functions are intended for
handling of a decoded transaction (request, reply, acknowledgement), but there are others that handles connect,
disconnect and errors cases.

Each connection may have its own configuration of callback modules, re-send timers, transaction id ranges etc. and
they may be re-configured on-the-fly.

Inthe API of Megaco, auser may explicitly send action requests, but generation of transaction identifiers, the encoding
and actual transport of the message to the remote user is handled automatically by the protocol engine according to
the actual connection configuration. Megaco messages are not exposed in the API.

On the receiving side the transport modul e receives the message and forwards it to the protocol engine, which decodes
it and invokes user callback functions for each transaction. When a user has handled its action requests, it simply
returns a list of action replies (or a message error) and the protocol engine uses the encoding module and transport
module to compose and forward the message to the originating user.

The protocol stack does also handle things like automatic sending of acknowledgements, pending transactions, re-
send of messages, supervision of connections etc.

In order to provide asolution for scalable implementations of MG'sand MGC's, a user may be distributed over several
Erlang nodes. One of the Erlang nodesis connected to the physical network interface, but messages may be sent from
other nodes and the replies are automatically forwarded back to the originating node.

1.2.3 Single node config

Here a system configuration with an MG and MGC residing in one Erlang node each is outlined:

4 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.2 Architecture

eticf
dec

-] —]

Frotocol Engine

Transport Lasyer

Y

MG Uszer |--

.q_

_______________ - DMGC User

Frotocol Engine *_., zt;zf

_______________ 4| Transport Layer
&

Figure 2.2: Single node config

1.2.4 Distributed config

Inalarger system with auser (in this case an MGC) distributed over several Erlang nodes, it looks alittle bit different.
Here the encoding is performed on the originating Erlang node (1) and the binary isforwarded to the node (2) with the
physical network interface. When the potential messagereply isreceived ontheinterfaceon node(2), it isdecoded there
and then different actions will be taken for each transaction in the message. The transaction reply will be forwarded in
its decoded form to the originating node (1) while the other types of transactions will be handled locally on node (2).

Timers and re-send of messages will be handled on locally on one node, that is node(1), in order to avoid unnecessary
transfer of data between the Erlang nodes.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 5

1.2 Architecture

C onceptual MGC

|

|

|

|

: ,J[MGC User
| =]

:

node 1

MG U | — | Protocol Engine p| enc
BEY

encl [.
dec |4— Protocol Engine

Tratsport Lager ¥ P

|
|
|
|
|
|
|
|
|
|
|
|
|
F 3 e I
|
4
|
|
|
|
|
|
|
I

| Frotocol Engine 1; dec

e Tratsport Lagrer

Figure 2.3: Distributes node config

1.2.5 Message round-trip call flow

Thetypical round-trip of a message can be viewed as follows. Firstly we view the call flow on the originating side:

6 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.2 Architecture

Figure 2.4: Message Call Flow (originating side)

Then we continue with the call flow on the destination side:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 7

1.3 Running the stack

transport i encoder nser

receive bntes(1]

MEZACOTECEY E_Messag el

| Enchioddecode_messazel

Userhd odhandle trans_requeaty3

Enchiod:encode messazel

Ee:tu:]l‘-‘I od:zend_messagel

send Errtes (2]

receive ytes(3)
—_—

MmeZacoTECEYE_Messag et

Enchioddecods messagel

-

Userhd odhandle| trans_ack

Figure 2.5: Message Call Flow (destination side)

1.3 Running the stack
1.3.1 Starting

A user may have anumber of "virtual" connectionsto other users. An MG is connected to at most one MGC, while an
MGC may be connected to any number of MG's. For each connection the user selects atransport service, an encoding
scheme and a user callback module.

An MGC must initiate its transport service in order to listen to MG's trying to connect. How the actual transport is
initiated is outside the scope of this application. However a send handle (typically a socket id or host and port) must
be provided from the transport service in order to enable us to send the message to the correct destination. We do
however not assume anything about this, from our point of view, opague handle. Hopefully it is rather small since it
will passed around the system between processes rather frequently.

A user may either be statically configured in a .config file according to the application concept of Erlang/OTP or
dynamically started with the configuration settings as arguments to megaco:start_user/2. These configuration settings
may be updated later on with megaco:update_conn_info/2.

The function megaco:connect/4 is used to tell the Megaco application about which control processit should supervise,
which MID the remote user has, which callback module it should use to send messages etc. When this "virtua”
connection is established the user may use megaco:call/3 and megaco:cast/3 in order to send messages to the other

8 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.3 Running the stack

side. Then it isup to the MG to send its first Service Change Request message after applying some clever algorithm
in order to fight the problem with startup avalanche (as discussed in the RFC).

The originating user will wait for a reply or a timeout (defined by the request_timer). When it receives the reply
thiswill optionally be acknowledged (regulated by auto_ack), and forwarded to the user. If an interim pending reply
is received, the long_request_timer will be used instead of the usual request_timer, in order to enable avoidance of
spurious re-sends of the request.

On the destination side the transport service waits for messages. Each message is forwarded to the M egaco application
viathe megaco:receive_message/4 callback function. Thetransport service may or may not provide meansfor blocking
and unblocking the reception of the incoming messages.

If a message is received before the "virtua" connection has been established, the connection will be setup
automatically. An MGC may be real open minded and dynamically decide which encoding and transport service to
use depending on how the transport layer contact is performed. For |P transports two ports are standardized, one for
textual encoding and one for binary encoding. If for example an UDP packet was received on the text port it would
be possible to decide encoding and transport on the fly.

After decoding a message various user callback functions are invoked in order to allow the user to act properly. See
the megaco_user module for more info about the callback arguments.

When the user has processed a transaction request in its callback function, the Megaco application assembles a
transaction reply, encodes it using the selected encoding module and sends the message back by invoking the callback
function:

e SendMod:send_message(SendHandl e, ErlangBinary)

Re-send of messages, handling pending transactions, acknowledgements etc. is handled automatically by the Megaco
application but the user is free to override the default behaviour by the various configuration possibilities. See
megaco:update_user_info/2 and megaco:update_conn_info/2 about the possibilities.

When connections gets broken (that is explicitly by megaco:disconnect/2 or when its controlling process dies) a user
callback functionisinvokedin order to allow the user to re-establish the connection. Theinternal state of kept messages,
re-send timers etc. is not affected by this. A few re-sends will of course fail while the connection is down, but the
automatic re-send algorithm does not bother about this and eventually when the connection is up and running the
messages will be delivered if the timeouts are set to be long enough. The user has the option of explicitly invoking
megaco:cancel/2 to cancel all messages for a connection.

1.3.2 MGC startup call flow

In order to preparethe MGC for the reception of theinitial message, hopefully a Service Change Reguest, thefollowing
needs to be done:
» Start the Megaco application.

e Start the MGC user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the
-megaco users configuration parameter.

« Initiate the transport service and provide it with a receive handle obtained from megaco:user_info/2.

When the initial message arrives the transport service forwards it to the protocol engine which automatically sets up
the connection and invokes UserMod:handle_connect/2 before it invokes UserMod:handle_trans_request/3 with the
Service Change Request like this:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 9

1.3 Running the stack

Figure 3.1: MGC Startup Call Flow

1.3.3 MG startup call flow

In order to prepare the MG for the sending of the initial message, hopefully a Service Change Request, the following
needs to be done:
e Start the Megaco application.

» Start the MG user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the -
megaco users configuration parameter.

« |nitiate the transport service and provide it with a receive handle obtained from megaco:user_info/2.
e Setup a connection to the MGC with megaco:connect/4 and provide it with a receive handle obtained from
megaco:user_info/2.

If the MG has been provisioned with the MID of the MGC it can be given as the RemoteMid parameter to
megaco:connect/4 and the call flow will look like this:

10 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.3 Running the stack

Figure 3.2: MG Startup Call Flow

If the MG cannot be provisioned with the MID of the MGC, the MG can use the atom 'preliminary_mid' as the
RemoteMid parameter to megaco:connect/4 and the call flow will look like this:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 11

1.3 Running the stack

Figure 3.3: MG Startup Call Flow (no MID)

1.3.4 Configuring the Megaco stack

There are three kinds of configuration:

e Userinfo - Information related to megaco users. Read/Write.
A User isan entity identified by aMID, e.g. aMGC or aMG.

Thisinformation can be retrieved using megaco:user_info.
e Connection info - Information regarding connections. Read/Write.

This information can be retrieved using megaco:conn_info.
e Systeminfo - System wide information. Read only.

This information can be retrieved using megaco:system_info.

1.3.5 Initial configuration

The initial configuration of the Megaco should be defined in the Erlang system configuration file. The following
configured parameters are defined for the Megaco application:

12 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.3 Running the stack

e wusers = [{Md, [user_config()]}].
Each user is represented by a tuple with the Mid of the user and a list of config parameters (each parameter is
inturnatuple: {1 tem Val ue}).

e scanner = flex | {Mdule, Function, Argunents, Mbodul es}

o fl ex will result in the start of the flex scanner with default options.
e The MFA dternative makes it possible for Megaco to start and supervise a scanner written by the user (see
supervi sor: start_chi | d for an explanation of the parameters).

See also Configuration of text encoding module(s) for moreinfo.

1.3.6 Changing the configuration

The configuration can be changed during runtime. This is done with the functions megaco:update user_info and
megaco:update_conn_info

1.3.7 The transaction sender
The transaction sender is a process (one per connection), which handle all transaction sending, if so configured (see
megaco:user_info and megaco:conn_info).

The purpose of the transaction sender is to accumulate transactions for a more efficient message sending. The
transactions that are accumulated are transaction request and transaction ack. For transaction ack's the benefit is
quite large, since the transactions are small and it is possible to have ranges (which means that transaction acks for
transactions 1, 2, 3 and 4 can be sent as arange 1-4 in one transaction ack, instead of four separate transactions).

There are a number of configuration parameter's that control the operation of the transaction sender. In principle, a
message with everything stored (ack's and request's) is sent from the process when:

e Whentrans_ti mer expires.

e Whentrans_ack_nmaxcount number of ack's has been received.

« Whentrans_req_rmaxcount number of requests's has been received.

* Whenthesize of al received requests exceedst r ans_r eq_nmaxsi ze.

e When areply transaction is sent.

* When apending transaction is sent.

When something is to be sent, everything is packed into one message, unless the trigger was a reply transaction and

the added size of the reply and al the requests is greater then t r ans_r eq_rnaxsi ze, in which case the stored
transactions are sent first in a separate message and the reply in another message.

When the transaction sender receives a request which is already "in storage" (indicated by the transaction id) it is
assumed to be a resend and everything stored is sent. This could happen if the values of thet r ans_t i ner and the
request _ti ner isnot properly chosen.

1.3.8 Segmentation of transaction replies

In version 3 of the megaco standard, the concept of segnent ati on package was introduced. Simply, this
package defines a procedure to segment megaco messages (transaction replies) when using a transport that does not
automatically do this (e.g. UDP).

Although it would be both pointless and counterproductive to use segmentation on a transport that already does this
(e.g. TCP), the megaco application does not check this. Instead, it is up to the user to configure this properly.

* Receiving segmented messages:

Thisis handled automatically by the megaco application. There is however one thing that need to be configured
by the user, the segment_recv_timer option.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 13

1.4 Internal form and its encodings

Note that the segments are delivered to the user differently depending on which function is used to issue the
original request. When issuing the request using the megaco:cast function, the segments are delivered to the user
viathe handle_trans_reply callback function one at atime, asthey arrive. But this obviously doe not work for the
megaco:call function. In this case, the segments are accumulated and then delivered all at once as the function
returns.
e Sending segmented messages:

Thisis aso handled automatically by the megaco application. First of al, segmentation is only attempted if so
configured, see the segment_send option. Secondly, megaco relies on the ability of the used codec to encode
action replies, which is the smallest component the megaco application handles when segmenting. Thirdly, the
reply will be segmented only if the sum of the size of the action replies (plus an arbitrary message header size) are
greater then the specified max message size (see the max_pdu_size option). Finally, if segmentation is decided,
then each action reply will make up its own (segment) message.

1.4 Internal form and its encodings

This version of the stack is compliant with:

e Megaco/H.248 version 1 (RFC3525) updated according to Implementors Guide version 10-13.

* Megaco/H.248 version 2 as defined by draft-ietf-megaco-h248v2-04 updated according to Implementors Guide
version 10-13.

* Megaco/H.248 version 3 as defined by 1TU H.248.1 (09/2005).

1.4.1 Internal form of messages

We use the same internal form for both the binary and text encoding. Our internal form of Megaco/H.248 messages
is heavily influenced by theinternal format used by ASN.1 encoders/decoders:

* "SEQUENCE OF" isrepresented as alist.

"CHOICE" is represented as a tagged tuple with size 2.

"SEQUENCE" isrepresented as arecord, defined in "megaco/include/megaco_message vi.hrl".

"OPTIONAL" isrepresented as an ordinary field in arecord which defaults to ‘asnl NOVALUE', meaning that
thefield has no value.

e "OCTET STRING" isrepresented as alist of unsigned integers.
« "ENUMERATED" isrepresented as a single atom.

e "BIT STRING" isrepresented as alist of atoms.

* "BOOLEAN" isrepresented as the atom 'true’ or ‘false'.

* "INTEGER" isrepresented as an integer.

e "IA5String" is represented as a list of integers, where each integer is the ASCII value of the corresponding
character.

e "NULL" isrepresented as the atom 'NULL".
In order to fully understand the internal form you must get hold on a ASN.1 specification for the Megaco/H.248

protocol, and apply the rules above. Please, see the documentation of the ASN.1 compiler in Erlang/OTP for more
details of the semantics in mapping between ASN.1 and the corresponding internal form.

Observe that the "Terminationld' record is not used in the internal form. It has been replaced with a megaco_term_id
record (defined in "megaco/include/megaco.hrl™).

14 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

1.4.2 The different encodings

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do in fact supply five different encoding/decoding modules.

In the text encoding, implementors have the choice of using a mix of short and long keywords. It is also possible
to add white spaces to improve readability. We use the term compact for text messages with the shortest possible
keywords and no optional white spaces, and the term pretty for awell indented text format using long keywords and
an indentation style like the text examples in the Megaco/H.248 specification).

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions
of text messages. First the pretty, well indented version with long keywords:

MEGACO/1 [124.124.124.222]
Transaction = 9998 {

Context = - {
ServiceChange = ROOT {
Services {
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 Cold Boot"
}
}
}

}

Then the compact version without indentation and with short keywords:

1/1 [124.124.124.222]
T=9998{C=-{SC=R0O0T{SV{MT=RS, AD=55555, PF=ResGW/1,RE="901 Cold Boot"}}}}

And the programmers view of the same message. First alist of ActionRequest records are constructed and then it is
sent with one of the send functionsin the API:

Prof = #'ServiceChangeProfile'{profileName = "resgw", version = 1},

Parm = #'ServiceChangeParm'{serviceChangeMethod = restart,
serviceChangeAddress = {portNumber, 55555},
serviceChangeReason = "901 Cold Boot",
serviceChangeProfile = Prof},

Req = #'ServiceChangeRequest'{terminationID = [?megaco root termination id],
serviceChangeParms = Parm},
Actions = [#'ActionRequest'{contextId = ?megaco null context id,

commandRequests = {serviceChangeReq, Req}}],
megaco:call(ConnHandle, Actions, Config).

And finally a print-out of the entire internal form:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 15

1.4 Internal form and its encodings

{'MegacoMessage",

asnl NOVALUE,
{'Message',
1'
{ip4Address,{'IP4Address', [124,124,124,222], asnl NOVALUE}},
{transactions,
[
{transactionRequest,
{'TransactionRequest',
9998,
[{'ActionRequest’,
0I
asnl NOVALUE,
asnl NOVALUE,
[
{'CommandRequest"',
{serviceChangeReq,
{'ServiceChangeRequest"',
[
{megaco_term id, false, ["root"]}],
{'ServiceChangeParm',
restart,
{portNumber, 55555},
asnl NOVALUE,
{'ServiceChangeProfile', "resgw", version = 1},
"901 MG Cold Boot",
asnl NOVALUE,
asnl NOVALUE,
asnl NOVALUE
)
)
}I
asnl NOVALUE,
asnl NOVALUE

The following encoding modules are provided:

megaco_pretty text encoder - encodes messages into pretty text format, decodes both pretty as well as compact
text.

megaco_compact_text_encoder - encodes messages into compact text format, decodes both pretty as well as
compact text.

megaco_binary_encoder - encode/decode ASN.1 BER messages. This encoder implementsthe fastest of the BER
encoders/decoders. Recommended binary codec.

megaco_ber_encoder - encode/decode ASN.1 BER messages.

megaco_per_encoder - encode/decode ASN.1 PER messages. N.B. that thisformat is not included in the Megaco
standard.

megaco_erl_dist_encoder - encodes messages into Erlangs distribution format. It is rather verbose but encoding
and decoding is blinding fast. N.B. that this format is not included in the Megaco standard.

16 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

1.4.3 Configuration of Erlang distribution encoding module

The encoding_config of the megaco_erl_dist_encoder module may be one of these:

* [] - Encodes the messages to the standard distribution format. It is rather verbose but encoding and decoding
isblinding fast.

e [negaco_conpressed] - Encodes the messages to the standard distribution format after an internal

transformation. It is less verbose, but the total time of the encoding and decoding will on the other hand be
somewhat slower (see the performance chapter for more info).

« [{megaco_conpressed, Mdul e}] - Worksinthesameway asthemegaco _compressed config parameter,
only here the user provide their own compress module. This module must implement the megaco_edist_compress
behaviour.

e« [conpressed] - Encodes the messages to a compressed form of the standard distribution format. It is less
verbose, but the encoding and decoding will on the other hand be slower.

1.4.4 Configuration of text encoding module(s)
When using text encoding(s), there is actually two different configs controlling what software to use:

* [] - Anempty list indicates that the erlang scanner should be used.

e [{flex, port()}] - Usetheflex scanner when decoding (not optimized for SMP). Seeinitial configuration
for more info.

e [{flex, ports()}] - Usetheflex scanner when decoding (optimized for SMP). See initial configuration
for more info.
The Flex scanner is a Megaco scanner written asalinked in driver (in C). There are two ways to get this working:
» Let the Megaco stack start the flex scanner (load the driver).
To make this happen the megaco stack hasto be configured:
e« Addthe{scanner, fl ex} (orsimilar) directiveto an Erlang system config file for the megaco app (see
initial configuration chapter for details).
« Retrieve the encoding-config using the system_info function (withl t em = t ext _confi g).
* Update the receive handle with the encoding-config (the encodi ng_confi g field).
The benefit of thisisthat Megaco handles the starting, holding and the supervision of the driver and port.
e The Megaco client (user) starts the flex scanner (load the driver).

When starting the flex scanner a port to the linked in driver is created. This port has to be owned by a process.
This process must not die. If it does the port will also terminate. Therefor:

» Create apermanent process. Make sure this process is supervised (so that if it does die, thiswill be noticed).
» Let this process start the flex scanner by calling themegaco_f | ex_scanner: start/ 0, 1 function.

e Retrieve the encoding-config and when initiating the negaco_recei ve_handl e, set the field
encodi ng_confi g accordingly.

» Passthenegaco_r ecei ve_handl e to the transport module.

1.4.5 Configuration of binary encoding module(s)
When using binary encoding, the structure of the termination id's needs to be specified.

e [native] -skipsthetransformation phase, i.e. the decoded message(s) will not be transformed into our internal
form.

e [Jinteger()] -A list containing the size (the number of bits) of each level. Example: [3, 8, 5, 8] .

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 17

1.5 Transport mechanisms

 integer() - Number of one byte (8 bits) levels. N.B. This is currently converted into the previous config.
Example: 3 ([8, 8, 8]).

1.4.6 Handling megaco versions

There are two ways to handle the different megaco encoding versions. Either using dynamic ver sion detection (only
valid for for incoming messages) or by explicit version setting in the connection info.
For incoming messages.
e Dynamic version detection
Set the protocol version in the megaco_receive handleto dynani ¢ (thisisthe default).
This works for those codecs that support partial decode of the version, currently text, and ber bin

(megaco_bi nary_encoder and megaco_ber bi n_encoder).
This way the decoder will detect which version is used and then use the proper decoder.

» Explicit version
Explicitly set the actual protocol version in the megaco _receive handle.
Start with version 1. When the initial service change has been performed and version 2 has been negotiated,
upgrade the megaco_receive_handle of the transport process (control_pid) to version 2. See megaco_tcp and
megaco_udp.
Note that if udp is used, the same transport process could be used for several connections. This could make
upgrading impossible.
For codecs that does not support partial decode of the version, currently negaco_ber encoder and
megaco_per _encoder,dynam c will revert to version 1.

For outgoing messages.

» Update the connection info protocol_version.

e Override protocol version when sending amessage by adding theitem{ pr ot ocol _versi on, integer()}
to the Options. See call or cast.
Notethat this does not effect the messages that are sent autonomously by the stack. They use the protocol_version
of the connection info.

1.4.7 Encoder callback functions

The encoder callback interface is defined by the megaco_encoder behaviour, see megaco_encoder.

1.5 Transport mechanisms
1.5.1 Callback interface

The callback interface of the transport module contains several functions. Some of which are mandatory while others
are only optional:

 send_nessage - Send amessage. Mandatory
e bl ock - Block the transport. Optional

This function is usefull for flow control.
e unbl ock - Unblock the transport. Optional

For more detail, see the megaco_transport behaviour definition.

18 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.6 Implementation examples

1.5.2 Examples

The Megaco/H.248 application contains implementations for the two protocols specified by the Megaco/H.248
standard; UDP, see megaco_udp, and TCP/TPKT, see megaco_tcp.

1.6 Implementation examples

1.6.1 A simple Media Gateway Controller

In megaco/examples/simple/megaco_simple_mgc.erl there is an example of a smple MGC that listens on both text
and binary standard ports and is prepared to handle a Service Change Request message to arrive either via TCP/IP or
UDP/IP. Messages received on the text port are decoded using a text decoder and messages received on the binary
port are decoded using a binary decoder.

The Service Change Reply is encoded in the same way as the request and sent back to the MG with the same transport
mechanism UDP/IP or TCP/IP.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.
The MGC, with its four listeners, may be started with:

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco_simple mgc:start().

or simply 'gmake mgc'.

The -s megaco _filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MGC interacts with the Megaco/
H.248 protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

1.6.2 A simple Media Gateway

In megaco/examples/simple/megaco_simple_mg.erl there is an example of a simple MG that connects to an MGC,
sends a Service Change Request and waits synchronously for areply.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.

Assuming that the MGC is started on the local host, four different MG's, using text over TCP/IP, binary over TCP/IP,
text over UDP/IP and binary over UDP/IP may be started on the same Erlang node with:

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco_simple mg:start().

or simply ‘gmake mg'.

If you "only" want to start a single MG which tries to connect an MG on a host named "baidarka", you may use one
of these functions (instead of the megaco_simple_mg:start/0 above):

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 19

1.7 Megaco mib

megaco_simple mg:start tcp text("baidarka", []).

megaco_simple mg:start tcp binary("baidarka", [1).
megaco_simple mg:start udp text("baidarka", []).
megaco_simple mg:start udp binary("baidarka", [1).

The -s megaco_filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MG interacts with the Megaco/H.248
protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

1.7 Megaco mib

1.7.1 Intro

The Megaco mib is as of yet not standardized and our implementation is based on draft-ietf-megaco-mib-04.txt.
Almost all of the mib cannot easily be implemented by the megaco application. Instead these things should be
implemented by a user (of the megaco application).

So what part of the mib isimplemented? Basically the relevant statistic counters of the M edGwyGatewayStatsEntry.

1.7.2 Statistics counters

Theimplementation of the statistic countersislightweight. 1.e. the statistic counters are handled separately by different
entities of the application. For instance our two transport modul e(s) (see megaco_tcp and megaco_udp) maintain their
own counters and the application engine (See megaco) maintain its own counters.

This also meansthat if a user implement their own transport service then it has to maintain its own statistics.

1.7.3 Distribution

Each megaco application maintainsits own set of counters. So in alarge (distributed) MG/MGC it could be necessary
to collect the statistics from several nodes (each) running the megaco application (only one of them with the transport).

1.8 Performance comparison

1.8.1 Comparison of encoder/decoders

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do supply abunch of different encoding/decoding modules and the
user may in fact implement their own (like our erl_dist module). Using a non-standard encoding format hasits obvious
drawbacks, but may be useful in some configurations.

We have made four different measurements of our Erlang/OTP implementation of the Megaco/H.248 protocol stack,
in order to compare our different encoders/decoders. The result of each one is summarized in the table below.

The result above are the fastest of these configurations for each codec. The figures presented are the average of all
used messages.

For comparison, also included are first, performance figures with megaco (including the measurement software) and
asnl applications hipe-compiled (second figure in the time columns, note that per bin decode had some issues so those
figures are not included), and second, performance figures where the flex driver was built asnon- r eent r ant flex
(third figure in the time columns, only valid for text codecs using the flex-scanner, figures within parenthesis).

20 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.8 Performance comparison

Codec and config Size Encode Decode Total

pretty 336 20/13 75140 95/53
pretty [flex] 336 20/13/20 39/33/38 59/ 46/ 58
compact 181 17/10 62/ 35 79/ 45
compact [flex] 181 17/10/17 37/31/36 54/41/53
per bin 91 60/ 29 64/ - 124/ -
per bin [driver] 91 39/24 42/ 26 81/50
per bin [native] 91 45/21 48/ - 93/ -
perbin 91 25/15 27118 52/33
[driver,native]

ber bin 165 32/19 38/21 70/ 40
ber bin [driver] 165 32/19 33/20 65/39
ber bin [native] 165 17/11 25/13 42124
F(?rrl\tl)le?n ative] 165 17/11 17/12 34/23
erl_dist 875 5/5 10/10 15/15
F:T!Eg i’:,o_compr essed] 405 6/4 714 13/8
erl_dist [compressed)] 345 47/ 47 20/ 20 67/67
erl_dist 200 34/33 11/9 45/ 42

[megaco_compressed,compressed]

Table 8.1: Codec performance

1.8.2 System performance characteristics
Thisis primarily away to show the effects of using the reentrant flex scanner instead of the non-reentrant.

As can be seen from the figures above thereis no real difference between anon-reentrant and an reentrant flex scanner
when it comes to the decode times of an individual message.

Theread differenceisinstead in system characteristics, which is best shown with the mstonel test.

When running SMP erlang on a multi-core machine the "throughput" is significantly higher. The mstonel test is an
extreme test, but it shows what is gained by using the reentrant flex-scanner.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 21

1.8 Performance comparison

MStonel (1 * Intel CoreZ2Quad Q9550 @ 2.83GHz, 4 GE of memoary)

mstonel.sh-dflex -s 4

aO000000
Soooooon
40000000

E 30000000
L 20000000
10000000
0
1 2 4 8 16 32
MStone

HBreentrant - Mon-reentrant

Figure 8.1: MStonel with mstonel.sh -d flex -s 4

1.8.3 Description of encoders/decoders

In Appendix A of the Megaco/H.248 specification (RFC 3525), there are about 30 messagesthat showsarepresentative
call flow. We have al'so added afew extraversion 1, version 2 and version 3 messages. We have used these messages
as basis for our measurements. Our figures have not been weighted in regard to how frequent the different kinds of
messages that are sent between the media gateway and its controller.

The test compares the following encoder/decoders:

pretty - pretty printed text. In the text encoding, the protocol stack implementors have the choice of using a mix
of short and long keywords. It is also possible to add white spacesto improve readability. The pretty text encoding
utilizes long keywords and an indentation style like the text examplesin the Megaco/H.248 specification.
compact - the compact text encoding uses the shortest possible keywords and no optional white spaces.

ber - ASN.1 BER.

per - ASN.1 PER. Not standardized as a valid Megaco/H.248 encoding, but included for the matter of
completeness asits encoding is extremely compact.

erl_dist - Erlang's native distribution format. Not standardized as a valid Megaco/H.248 encoding, but included
as areference dueto itswell known performance characteristics. Erlang is adynamically typed language and any
Erlang data structure may be serialized to the erl_dist format by using built-in functions.

The actual encoded messages have been collected in one directory per encoding type, containing one file per encoded
message.

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions
of text messages. First the pretty printed, well indented version with long keywords:

22 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.8 Performance comparison

MEGACO/1 [124.124.124.222]
Transaction = 9998 {
Context = - {
ServiceChange = ROOT {
Services {
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 MG Cold Boot"
}
}
)
)

Then the compact text version without indentation and with short keywords:

1/1 [124.124.124.222] T=9998{
C=-{SC=R0OOT{SV{MT=RS, AD=55555, PF=ResGW/1,RE="901 MG Cold Boot"}}}}

1.8.4 Setup

The measurements has been performed on a HP xw4600 Workstation with a Intel (R) Core(TM)2 Quad CPU Q9550
@ 2.83GHz, with 4 GB memory and running Ubuntu 10.04 x86_64, kernel 2.6.32-22-generic. Software versions was
open source OTP R13B04 (megaco-3.14).

1.8.5 Summary

In our measurements we have seen that there are no significant differencesin message sizes between ASN.1 BER and
the compact text format. Some care should be taken when using the pretty text style (whichisused in all the examples
included in the protocol specification and preferred during debugging sessions) since the messages can then be quite
large. If the message sizeredlly is aserious issue, our per encoder should be used, as the ASN.1 PER format is much
more compact than all the other alternatives. Its major drawback isthat it is has not been approved as avalid Megaco/
H.248 message encoding.

When it comes to pure encode/decode performance, it turns out that:

» our fastest binary encoder (ber) is about equal to our fastest text encoder (compact).
» our fastest binary decoder (ber) is about 54% (61%) faster than our fastest text decoder (compact).

If the pure encode/decode performance really is a serious issue, our erl_dist encoder could be used, as the encoding/
decoding of the erlang distribution format is much faster than al the other alternatives. Its mgjor drawback is that it
is has not been approved as a valid Megaco/H.248 message encoding.

There is no performance advantage of building (and using) a non-reentrant flex scanner over areentrant flex scanner
(if flex supports building such a scanner).

Please, observe that these performance figures are related to our implementation in Erlang/OTP. Measurements of
other implementations using other tools and techniques may of course result in other figures.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 23

1.9 Testing and tools

1.9 Testing and tools
1.9.1 Tracing

We have instrumented our code in order to enable tracing. Running the application with tracing deactivated, causes
a negligible performance overhead (an external call to a function which returns an atom). Activation of tracing does
not require any recompilation of the code, since we rely on Erlang/OTP's built in support for dynamic trace activation.
In our case tracing of callsto agiven external function.

Event traces can be viewed in a generic message sequence chart tool, et , or as standard output (events are written
to stdio).

See enable trace, disable trace and set_trace for more info.

1.9.2 Measurement and transformation

We have included some simple tool(s) for codec measurement (meas), performance tests (mstonel and mstone?2) and
message transformation.

Thetool(s) are located in the example/meas directory.

Requirement

e Erlang/OTP, version R13B01 or later.

e Version 3.11 or later of this application.

* Version 1.6.10 or later of the asn1 application.

« Theflex libraries. Without it, the flex powered codecs cannot be used.

Meas results

The results from the measurement run (meas) is four excel-compatible textfiles:
* decode_time.xls-> Decoding result

* encode_timexls-> Encoding result

e total_timexls-> Total (Decoding+encoding) result
* message sizexls-> Message size

Instruction

The tool contain four things:

e Thetransformation module

* The measurement (meas) module(s)

e The mstone (mstonel and mstone2) module(s)

e Thebasic messagefile

Message Transformation

The messages used by the different tools are contained in single message package file (see below for moreinfo). The
messages in this file is encoded with just one codec. During measurement initiation, the messages are read and then
transformed to all codec formats used in the measurement.

The message transformation is done by the transformation module. It is used to transform a set of messages encoded
with one codec into the other base codec's.

Measurement(s)
There are two different measurement tools:

24 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.9 Testing and tools

. meas.

Used to perform codec measurements. That is, to see what kind of performance can be expected by the different
codecs provided by the megaco application.

The measurement is done by iterating over the decode/encode function for approx 2 seconds per message and
counting the number of decodes/encodes.

I's best run by modifying the meas.sh.skel skeleton script provided by the toal.
To run it manually do the following:

% erl -pa <path-megaco-ebin-dir> -pa <path-to-meas-module-dir>
Erlang (BEAM) emulator version 5.6 [source]

Eshell V5.7.1 (abort with ~G)
1> megaco _codec _meas:start().

2> halt().
or to make it even easier, assuming a measure shall be done on all the codecs (as above):

% erl -noshell -pa <path-megaco-ebin-dir> \\
-pa <path-to-meas-module-dir> \\
-s megaco _codec meas -s init stop

When run as above (this will take some time), the measurement processis done as follows:

For each codec:
For each message:
Read the message from the file
Detect message version
Measure decode
Measure encode
Write results, encode, decode and total, to file

e mstonel and mstone2:
These are two different SMP performance monitoring tool(s).

mstonel creates a process for each codec config supported by the megaco application and let them run for a
specific time (all at the sametime), encoding and decoding megaco messages. The humber of messages processed
in total is the mstonel(1) value.

There are different waysto run the mstonel tool, e.g. with or without the use of drivers, with only flex-empowered
configs.

I's best run by modifying the mstonel.sh.skel skeleton script provided by the tool.

Themstone2 issimilar to the mstonel tool, but in this case, each created process makes only one run through the
messages and then exits. A soon as a process exits, a new process (with the same config and messages) is created
to takesits place. The number of messages processed in total isthe mstone2(1) value.

Both these tools use the message package (time_test.msgs) provided with the tool(s), athough it can run on any
message package as long as it has the same structure.

Message package file

This is simply an erlang compatible text-file with the following structure: {codec_nane(),
messages_list()}.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 25

1.9 Testing and tools

codec_name() = pretty | compact | ber | per | erlang (how the messages are encoded)
messages list() = [{message name(), message()}]

message name() = atom()

message() = binary()

The codec name is the name of the codec with which all messagesinthenessage | i st () hasbeen encoded.

This file can be export ed to a file structure by calling the export_messages function. This can be usefull if a
measurement shall be done with an external tool. Exporting the messages creates a directory tree with the following
structure:

<message package>/pretty/<message-files>
compact/
per/
ber/<message-files>
erlang/

Thefileincludes both version 1, 2 and version 3 messages.

Notes
Binary codecs

There are two basic ways to use the binary encodings: With package related name and termination id transformation
(the 'native’ encoding config) or without. This transformation converts package related names and termination id's to
amore convenient internal form (equivalent with the decoded text message).

The transformation is done _after _ the actual decode has been done.

Furthermore, it is possible to make use of alinked in driver that performs some of the decode/encode, decode for ber
and encode for per (the 'driver' encoding config).

Therefor in the tests, binary codecs are tested with four different encoding configs to determine exactly how the
different options effect the performance: with transformation and without driver ([]), without transformation and
without driver ([native]), with transformation and with driver ([driver]) and finally without transformation and with
driver ([driver,native]).

Included test messages

Some of these messages are ripped from the call flow examplesin an old version of the RFC and others are created
to test a specific feature of megaco.

Measurement tool directory name

Be sure not no name the directory containing the measurement binaries starting with 'megaco-', e.g. megaco-mess.
Thiswill confuse the erlang application loader (erlang applications are named, e.g. megaco-1.0.2).

26 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.9 Testing and tools

2 Reference Manual

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 27

megaco

megaco

Erlang module

Interface module for the Megaco application

DATA TYPES
megaco mid() = ip4Address() | ip6Address() |
domainName() | deviceName() |

mtpAddress()

ip4Address() = #'IP4Address'{}
ip6Address() = #'IP6Address'{}
domainName() = #'DomainName'{}
deviceName() = pathName()
pathName() = ia5String(1l..64)
mtpAddress() = octetString(2..4)

action request() = #'ActionRequest'{}
action reply() = #'ActionReply'{}

error _desc() = #'ErrorDescriptor'{}
transaction reply() = #'TransactionReply'{}
segment no() = integer()

resend indication() = flag | boolean()

property parm() = #'PropertyParm'{}
property _group() = [property parm()]
property groups() = [property group()]

sdp() = sdp c() | sdp o() | sdp s() | sdp i() | sdp u() |

sdp_e() | sdp_p() | sdp_b() | sdp_z() | sdp_k() |
() | sdp_a rtpmap() | sdp_a ptime() |

sdp t() | sdp_r() | sdp _m()

sdp v() = #megaco sdp v{} (Protocol version)

sdp _o() = #megaco sdp o{} (Owner/creator and session identifier)
sdp_s() = #megaco sdp s{} (Session name)

sdp _i() = #megaco sdp i{} (Session information)
sdp u() = #megaco sdp u{} (URI of description)

sdp e() = #megaco sdp e{} (Email address)

sdp _p() = #megaco sdp p{} (Phone number)

sdp _c() = #megaco _sdp c{} (Connection information)
sdp b() = #megaco sdp b{} (Bandwidth information)
sdp_k() = #megaco sdp k{} (Encryption key)

sdp_a() = #megaco sdp a{} (Session attribute)

sdp _a rtpmap() = #megaco sdp a rtpmap{}
sdp_a ptime() = #megaco sdp a ptime{}

sdp a quality() = #megaco sdp a quality{}
sdp_a fmtp() = #megaco sdp a fmtp{}

sdp z() = #megaco _sdp z{} (Time zone adjustment)

sdp _t() = #megaco sdp t{} (Time the session is active)

sdp _r() = #megaco sdp r{} (Repeat times)

sdp m() = #megaco sdp m{} (Media name and transport address)

sdp:property_parm() = sdp() | property parm()
sdp_property group() = [sdp property parm()]
sdp_property groups() = [sdp property group()]

megaco_timer() = infinity | integer() >= 0 | megaco incr timer()
megaco_incr timer() = #megaco incr timer{}

Therecord megaco_i ncr _ti ner containsthe following fields:

28 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

wait_for = integer() >=0
The actual timer time.

factor = integer() >=0
The factor when calculating the new timer time (wai t _f or).

incr = integer()
The increment value when calculating the new timer time (wai t _f or). Note that this value can be negative
and that a timer restart can therefor lead to awai t _f or value of zero! It is up to the user to be aware of the
consequences of awai t _f or vaue of zero.

max_retries = infinity | infinity_restartable | integer() >= 0
The maximum number of repetitions of the timer.
There is a specia case for this field. Whenthemax_retri es hasthevaluei nfinity_restartabl e, it
means that the timer is restartable as long as some external event occurs (e.g. receipt of a pending message for
instance). But the timer will never be restarted "by itself", i.e. when the timer expires (whatever the timeout
time), so does the timer. Whenever the timer is restarted, the timeout time will be calculated in the usual way!
Also, as mentioned above, beware the consequences of setting the valueto i nfi ni ty if incr has been set to
an negative value.

Exports

start() -> ok | {error, Reason}
Types:

Reason = term)
Starts the Megaco application

Users may either explicitly be registered with megaco:start_user/2 and/or be statically configured by setting the
application environment variable 'users to alist of {UserMid, Config} tuples. See the function megaco:start_user/2
for details.

stop() -> ok | {error, Reason}
Types:

Reason = tern()
Stops the Megaco application

start user(UserMid, Config) -> ok | {error, Reason}
Types.
UserM d = negaco_m d()
Config [{user_info_iten(), user_info_value()}]
Reason = term)

Initial configuration of a user

Requires the megaco application to be started. A user iseither aMedia Gateway (MG) or aMedia Gateway Controller
(MGC). One Erlang node may host many users.

A user isidentified by its UserMid, which must be alegal Megaco MID.
Configisalist of {Item, Value} tuples. See megaco:user_info/2 about which items and values that are valid.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 29

megaco

stop user(UserMid) -> ok | {error, Reason}
Types.

UserM d = negaco_m d()

Reason = term()
Delete the configuration of a user

Requires that the user does not have any active connection.

user_info(UserMid) -> [{Item, Value}l]
user _info(UserMid, Item) -> Value | exit(Reason)
Types:

Handl e = user _i nfo_handl e()

UserM d = negaco_m d()

Item = user_info_item)

Val ue = user _info_val ue()

Reason = term()

Lookup user information
Thefollowing Item's are valid:
connecti ons
Listsal active connections for this user. Returns alist of megaco_conn_handle records.
recei ve_handl e
Construct amegaco_receive_handle record from user config
trans_id
Current transaction id.
A positive integer or the atom undef i ned_seri al (in case no messages has been sent).
mn_trans_id
First transid.
A positive integer, defaults to 1.
max_trans_id
Last transid.
A positiveinteger or i nfi ni ty, defaultstoi nfinity.
request _timer
Wait for reply.
Thetimer is cancelled when areply isreceived.

When a pending message is received, thetimer is cancelled and thel ong_r equest _ti mer isstarted instead
(see below). No resends will be performed from this point (since we now know that the other side has received
the request).

When the timer reaches an intermediate expire, the request is resent and the timer is restarted.

When the timer reaches the final expire, either the function megaco: cal I will return with {error,
ti meout} orthe callback function handl e_t rans_r epl y will becalled with User Reply = {error,
ti meout} (if megaco: cast wasused).

30 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

A Megaco Timer (see explanation above), defaultsto #megaco_i ncr _tinmer{}.
| ong_request _tiner

Wait for reply after having received a pending message.

When the timer reaches an intermediate expire, the timer is restarted.

When a pending message is received, and thel ong_r equest _ti ner isnot "onitsfina leg", the timer will
berestarted, and, if | ong_request _resend = true, therequest will be re-sent.

A Megaco Timer (see explanation above), defaultsto 60 seconds.
| ong_request _resend

This option indicates weather the regquest should be resent until the reply is received, even though a pending
message has been received.

Normally, after a pending message has been received, the request is not resent (since a pending message is an
indication that the request has been received). But since the reply (to the request) can be lost, this behaviour has
itsvalues.

It is of course pointless to set thisvalue to true unlessthel ong_request _ti mer (seeabove) isalso set to
an incremental timer (#megaco_i ncr _tinmer{}).

A bool ean, defaultstof al se.
reply_timer
Wait for an ack.

When arequest is received, some info related to the reply is store internally (e.g. the binary of the reply). This
info will live until either an ack is received or this timer expires. For instance, if the same request is received
again (e.g. arequest with the same transaction id), the (stored) reply will be (re-) sent automatically by megaco.

If the timer is of type #megaco_i ncr _ti mer {}, then for each intermediate timout, the reply will be resent
(thisisvalid until the ack is received or the timer expires).

A Megaco Timer (see explanation above), defaults to 30000.
request _keep_alive_tinmeout
Specifies the timeout time for the request-keep-alive timer.

This timer is started when the first reply to an asynchronous request (issued using the megaco:cast/3 function)
arrives. Aslong asthistimer isrunning, replieswill be delivered viathe handle_trans reply/4,5 callback function,
with their "arrival number" (see User Repl y of the handle_trans_reply/4,5 callback function).

Replies arriving after the timer has expired, will be delivered using the handle_unexpected_trans/3,4 callback
function.

The timeout time can havethevalues: pl ain | integer() >= 0.
Defaultsto pl ai n.

call _proxy_gc_tinmeout
Timeout time for the call proxy.

When arequest is sent using the call/3 function, a proxy process is started to handle al replies. When the reply
has been received and delivered to the user, the proxy process continue to exist for aslong asthis option specifies.
Any received messages, is passed on to the user viathe handle_unexpected_trans callback function.

The timeout timeisin milliseconds. A value of 0 (zero) means that the proxy process will exit directly after the
reply has been delivered.

An integer >= 0, defaults to 5000 (= 5 seconds).

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 31

megaco

aut o_ack
Automatic send transaction ack when the transaction reply has been received (seet r ans_ack below).
Thisisused for three-way-handshake.
A bool ean, defaultstof al se.
trans_ack
Shall ack's be accumulated or not.
This property isonly vaid if aut o_ack istrue.

If aut o_ack is true, then if trans_ack is f al se, ack's will be sent immediately. If t rans_ack is
t r ue, then ack's will instead be sent to the transaction sender process for accumulation and later sending (see
trans_ack_nexcount, trans_req_maxcount, trans_req_naxsi ze, trans_ack_maxcount
andtrans_ti mer).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_ack_nmaxcount

Maximum number of accumulated ack's. At most this many ack's will be accumulated by the transaction sender
(if started and configured to accumulate ack's).

See also transaction sender for more info.
Ani nt eger, defaultsto 10.
trans_req
Shall requests be accumulated or not.
Iftrans_reqisf al se, thenrequest(s) will be sent immediately (in its own message).

If t rans_req istrue, then request(s) will instead be sent to the transaction sender process for accumulation
and later sending (see trans_ack_maxcount, trans_req_naxcount, trans_req_maxsi ze,
trans_ack_maxcount andtrans_ti mer).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_req_naxcount

Maximum number of accumulated requests. At most this many regquests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaultsto 10.
trans_req_maxsi ze

Maximum size of the accumulated requests. At most this much regquests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaultsto 2048.
trans_tiner

Transaction sender timeout time. Has two functions. First, if the value is 0, then transactions will not be
accumulated (e.g. the transaction sender process will not be started). Second, if the value is greater then 0 and
aut o_ack andt rans_ack are both true or if t rans_r eq is true, then transaction sender will be started

32 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

and transactions (which is depending on the values of aut o_ack, trans_ack and t rans_r eq) will be
accumulated, for later sending.

See al so transaction sender for more info.
Ani nt eger, defaultsto O.
pendi ng_ti nmer

Automatically send pending if the timer expires before atransaction reply has been sent. Thistimer isalso called
provisional response timer.

A Megaco Timer (see explanation above), defaults to 30000.
sent _pending_limnt

Sent pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingLimit of the megaco root
package). This parameter specifies how many pending messages that can be sent (for agiven received transaction
reguest). When the limit is exceeded, the transaction is aborted (see handle_trans request_abort) and an error
message is sent to the other side.

Note that this has no effect on the actual sending of pending transactions. This is either implicit (e.g. when
receiving are-sent transaction request for arequest which is being processed) or controlled by the pending_timer,
see above.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.
recv_pending_ lint

Receive pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingLimit of the megaco
root package). This parameter specifies how many pending messages that can be received (for a sent transaction
request). When the limit is exceeded, the transaction is considered lost, and an error returned to the user (through
the call-back function handle_trans_reply).

A positiveinteger or i nfi ni ty, defaultstoi nfinity.
send_nod

Send callback module which exports send_message/2. The function SendMod:send_message(SendHandle,
Binary) isinvoked when the bytes needs to be transmitted to the remote user.

Anat om defaultsto megaco_t cp.
encodi ng_nod

Encoding calback module which exports encode message/2 and decode message/2. The
function EncodingMod:encode_message(EncodingConfig, MegacoMessage) is invoked whenever a
'MegacoMessage’ record needs to be trandated into an Erlang binary. The function
EncodingMod:decode_message(EncodingConfig, Binary) is invoked whenever an Erlang binary needs to be
tranglated into a'MegacoM essage' record.

Anat om defaultsto megaco_pretty text _encoder.
encodi ng_config

Encoding module config.

Alist,defaultsto[] .
prot ocol version

Actual protocol version.

Ani nt eger, defaultis 1.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 33

megaco

strict _version
Strict version control, i.e. when amessage is received, verify that the version is that which was negotiated.
Anbool ean, default istrue.
reply data
Default reply data.
Any term, defaultsto the atom undef i ned.
user _nod
Name of the user callback module. See the the reference manual for megaco_user for moreinfo.
user_args
List of extraargumentsto the user callback functions. Seethethereference manual for megaco_user for moreinfo.
t hr eaded

If areceived message contains several transaction requests, this option indicates whether the requests should be
handled sequentially inthe same process (f al se), or if each request should be handled by itsown process(t r ue
i.e. aseparate process is spawned for each regquest).

Anbool ean, defaultstof al se.

resend_i ndi cation
This option indicates weather the transport module should be told if a message send is aresend or not.
If false, megaco messages are sent using the send_message function.

If true, megaco message r e-sends are made using the resend_message function. The initial message send is still
done using the send_message function.

The special value flag instead indicates that the function send_message/3 shall be used.
Aresend_i ndi cation(), defaultstof al se.

segrment _reply_ind
This option specifiesif the user shall be notified of received segment replies or not.
See handle_segment_reply callback function for more information.
A bool ean, defaultstof al se.

segment _recv_tiner

Thistimer is started when the segment indicated by the segnent at i on conpl et e t oken isreceived, but
all segments has not yet been received.

When thetimer finally expires, a"megaco segments not received” (459) error messageis sent to the other side and
theuser isnotified withasegnent ti neout User Repl y ineither thehandle_trans reply callback function
or the return value of the call function.

A Megaco Timer (see explanation above), defaultsto 10000.
segnment _send

Shall outgoing messages be segmented or not:

none

Do not segment outgoing reply messages. Thisis useful when either it is known that messages are never to
large or that the transport protocol can handle such things on its own (e.g. TCP or SCTP).

34 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

integer() >0

Outgoing reply messageswill be segmented asneeded (seemax_pdu_si ze below). Thisvalue, K, indicate
the outstanding window, i.e. how many segments can be outstanding (not acknowledged) at any given time.

infinity

Outgoing reply messages will be segmented as needed (see max_pdu_si ze below). Segment messages

are sent all at once (i.e. no acknowledgement awaited before sending the next segment).

Defaultsto none.
max_pdu_si ze

Max message size. If the encoded message (PDU) exceeds this size, the message should be segmented, and then

encoded.
A positiveinteger or i nfi ni ty, defaultstoi nfinity.

update user info(UserMid, Item, Value) -> ok | {error, Reason}

Types:
UserM d = negaco_m d()
Item = user_info_item)
Val ue = user _info_val ue()
Reason = term()

Update information about a user

Requires that the user is started. See megaco:user_info/2 about which items and values that are valid.

conn_info(ConnHandle) -> [{Item, Value}]
conn_info(ConnHandle, Item) -> Value | exit(Reason)
Types:

ConnHandl e = #negaco_conn_handl e{}

Item = conn_info_item)

Val ue = conn_i nfo_val ue()

Reason = {no_such_connection, ConnHandle} | tern()
Lookup information about an active connection
Requires that the connection is active.
control _pid

The process identifier of the controlling process for a connection.
send_handl e

Opague send handle whose contentsis internal for the send module. May be any term.

|l ocal _mid

The local mid (of the connection, i.e. the own mid). negaco_mi d() .
renote_md

The remote mid (of the connection). megaco_mi d() .
recei ve_handl e

Construct amegaco_receive _handle record.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 35

megaco

trans_id
Next transaction id. A positive integer or the atom undef i ned_seri al (only in case of error).

Note that transaction id's are (currently) maintained on a per user basis so there isno way to be sure that the value
returned will actually be used for a transaction sent on this connection (in case a user has several connections,
which isnot at all unlikely).

max_trans_id

Last transid.

A positiveinteger or i nfi ni ty, defaultstoi nfinity.
request _tiner

Wait for reply.

Thetimer is cancelled when areply isreceived.

When a pending message isreceived, thetimer is cancelled and thel ong_r equest _ti ner isstarted instead
(see below). No resends will be performed from this point (since we now know that the other side has received
the request).

When the timer reaches an intermediate expire, the request is resent and the timer is restarted.

When the timer reaches the final expire, either the function megaco: cal | will return with {error,
ti meout} orthe callback function handl e_t rans_r epl y will becaledwithUser Reply = {error,
ti meout} (if megaco: cast wasused).

A Megaco Timer (see explanation above), defaults to #megaco_incr_timer{}.
| ong_request _tiner

Wait for reply after having received a pending message.

When the timer reaches an intermediate expire, the timer restarted.

When a pending message is received, and thel ong_r equest _ti ner isnot "onitsfina leg", the timer will
berestarted, and, if | ong_request _resend = true,therequest will be re-sent.

A Megaco Timer (see explanation above), defaultsto 60 seconds.
request _keep_alive_timeout
Specifies the timeout time for the request-keep-alive timer.

This timer is started when the fir st reply to an asynchronous request (issued using the megaco:cast/3 function)
arrives. Aslong asthistimer isrunning, replieswill be delivered viathe handle_trans reply/4,5 callback function,
with their "arrival number" (see User Repl y of the handle_trans_reply/4,5 callback function).

Replies arriving after the timer has expired, will be delivered using the handle_unexpected_trans/3,4 callback
function.

Thetimeout time can havethevalues: pl ain | integer() >= 0.
Defaultsto pl ai n.
| ong_request _resend

This option indicates weather the request should be resent until the reply is received, even though a pending
message has been received.

Normally, after a pending message has been received, the request is not resent (since a pending message is an
indication that the request has been received). But since the reply (to the request) can be lost, this behaviour has
itsvalues.

36 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

It is of course pointless to set this value to true unlessthel ong_r equest _ti mer (see above) isaso set to
an incremental timer (#megaco_i ncr _ti mer{}).

A bool ean, defaultstof al se.
reply_timer
Wait for an ack.

When arequest is received, some info related to the reply is store internally (e.g. the binary of the reply). This
info will live until either an ack is received or this timer expires. For instance, if the same request is received
again (e.g. arequest with the same transaction id), the (stored) reply will be (re-) sent automatically by megaco.

If the timer is of type #megaco_i ncr _ti mer{}, then for each intermediate timout, the reply will be resent
(thisisvalid until the ack is received or the timer expires).

A Megaco Timer (see explanation above), defaults to 30000.
call _proxy_gc_ti meout
Timeout time for the call proxy.

When arequest is sent using the call/3 function, a proxy process is started to handle al replies. When the reply
has been received and delivered to the user, the proxy process continue to exist for aslong as this option specifies.
Any received messages, is passed on to the user viathe handle_unexpected_trans callback function.

The timeout time isin milliseconds. A value of 0 (zero) means that the proxy process will exit directly after the
reply has been delivered.

An integer >= 0, defaults to 5000 (= 5 seconds).
aut o_ack
Automatic send transaction ack when the transaction reply has been received (seet r ans_ack below).
Thisisused for thr ee-way-handshake.
A bool ean, defaultsto f al se.
trans_ack
Shall ack’s be accumulated or not.
This property isonly vaid if aut o_ack istrue.

If aut o_ack is true, then if trans_ack is f al se, ack's will be sent immediately. If t rans_ack is
t r ue, then ack's will instead be sent to the transaction sender process for accumulation and later sending (see
trans_ack_nexcount, trans_req_maxcount, trans_req_naxsi ze, trans_ack_maxcount
andtrans_ti mer).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_ack_nmaxcount

Maximum number of accumulated ack's. At most this many ack's will be accumulated by the transaction sender
(if started and configured to accumulate ack's).

See also transaction sender for more info.
An integer, defaults to 10.
trans_req
Shall requests be accumulated or not.
Iftrans_reqisf al se, thenrequest(s) will be sent immediately (in its own message).

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 37

megaco

If t rans_req istrue, then request(s) will instead be sent to the transaction sender process for accumulation
and later sending (see trans_ack_maxcount, trans_req_nexcount, trans_req_maxsi ze,
trans_ack_maxcount andtrans_ti mer).

See also transaction sender for more info.
Anbool ean, defaultstof al se.
trans_req_naxcount

Maximum number of accumulated requests. At most this many requests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaultsto 10.
trans_req_maxsi ze

Maximum size of the accumulated requests. At most this much requests will be accumulated by the transaction
sender (if started and configured to accumul ate requests).

See also transaction sender for more info.
Ani nt eger, defaultsto 2048.
trans_ti mer

Transaction sender timeout time. Has two functions. First, if the value is 0, then transactions will not be
accumulated (e.g. the transaction sender process will not be started). Second, if the value is greater then 0
and aut o_ack and trans_ack istrue or if t rans_r eq is true, then transaction sender will be started
and transactions (which is depending on the values of aut o_ack, trans_ack and t rans_r eq) will be
accumulated, for later sending.

See also transaction sender for more info.
Ani nt eger, defaultsto O.
pendi ng_ti nmer
Automatic send transaction pending if the timer expires before a transaction reply has been sent. This timer is
also caled provisional response timer.
A Megaco Timer (see explanation above), defaults to 30000.
sent _pending_lint

Sent pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingL imit of the megaco root
package). This parameter specifies how many pending messages that can be sent (for agiven received transaction
reguest). When the limit is exceeded, the transaction is aborted (see handle_trans request_abort) and an error
message is sent to the other side.

Note that this has no effect on the actual sending of pending transactions. This is either implicit (e.g. when
receiving are-sent transaction request for arequest which is being processed) or controlled by the pending_timer,
see above.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.
recv_pending_ lint

Receive pending limit (see the M GOriginatedPendingLimit and the M GCOriginatedPendingLimit of the megaco
root package). This parameter specifies how many pending messages that can be received (for a sent transaction
request). When the limit is exceeded, the transaction is considered lost, and an error returned to the user (through
the call-back function handle_trans reply).

A positiveinteger or i nfi ni ty, defaultstoi nfinity.

38 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

send_nod

Send callback module which exports send_message/2. The function SendMod:send_message(SendHandle,
Binary) isinvoked when the bytes needs to be transmitted to the remote user.

An at om defaultsto megaco_t cp.
encodi ng_nod

Encoding calback module which exports encode message/2 and decode message/2. The
function EncodingMod:encode message(EncodingConfig, MegacoMessage) is invoked whenever a
'MegacoMessage'’ record needs to be trandated into an FErlang binary. The function
EncodingM od:decode_message(EncodingConfig, Binary) is invoked whenever an Erlang binary needs to be
translated into a'MegacoM essage' record.

Anat om defaultstomegaco_pretty text encoder.
encodi ng_config
Encoding module config.
Ali st,defaultsto[].
prot ocol version
Actual protocol version.
An positive integer, Current default is 1.
strict _version
Strict version control, i.e. when amessage is received, verify that the version is that which was negotiated.
Anbool ean, default istrue.
reply data
Default reply data.
Any term, defaultsto the atom undef i ned.
t hr eaded

If areceived message contains several transaction requests, this option indicates whether the requests should be
handled sequentially in the same process (f al se), or if each request should be handled by itsown process(t r ue
i.e. aseparate process is spawned for each regquest).

Anbool ean, defaultstof al se.

resend_i ndi cation
This option indicates weather the transport module should be told if a message send is aresend or not.
If false, megaco messages are sent using the send_message/2 function.

If true, megaco message r e-sends are made using the resend_message function. Theinitial message send is still
done using the send_message function.

The special value flag instead indicates that the function send_message/3 shall be used.
Aresend_i ndi cation(),defaultstof al se.

segrment _reply_ind
This option specifiesif the user shall be notified of received segment replies or not.
See handle_segment_reply callback function for more information.
A bool ean, defaultstof al se.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 39

megaco

segnent _recv_ti mer

Thistimer is started when the segment indicated by thesegnent ati on conpl et e t oken (e.g. thelast of
the segment which makes up the reply) is received, but all segments has not yet been received.

When thetimer finally expires, a"megaco segments not received” (459) error messageis sent to the other side and
theuser isnotified withasegnent ti neout User Repl y ineither thehandle_trans reply callback function
or the return value of the call function.

A Megaco Timer (see explanation above), defaultsto 10000.
segrment _send

Shall outgoing messages be segmented or not:

none

Do not segment outgoing reply messages. This is useful when either it is known that messages are never to
large or that the transport protocol can handle such things on its own (e.g. TCP or SCTP).

integer() >0

Outgoing reply messageswill be ssgmented asneeded (seenmax_pdu_si ze below). Thisvalue, K, indicate
the outstanding window, i.e. how many segments can be outstanding (not acknowledged) at any given time.

infinity
Outgoing reply messages will be segmented as needed (see max_pdu_si ze below). Segment messages
are sent al at once (i.e. no acknowledgement awaited before sending the next segment).
Defaultsto none.
max_pdu_si ze

Max message size. If the encoded message (PDU) exceeds this size, the message should be segmented, and then
encoded.

A positiveinteger ori nfi ni ty, defaultstoi nfinity.

update conn info(ConnHandle, Item, Value) -> ok | {error, Reason}
Types.

ConnHandl e = #nmegaco_conn_handl| e{}

Item = conn_info_item)

Val ue = conn_i nfo_val ue()

Reason = term()

Update information about an active connection
Requires that the connection is activated. See megaco:conn_info/2 about which items and values that are valid.

system info() -> [{Item, Value}] | exit(Reason)
system info(Item) -> Value | exit(Reason)
Types:
Item = system.info_item)
Lookup system information
Thefollowing items are valid:
text_config

The text encoding config.

40 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

connecti ons

Lists all active connections. Returns alist of megaco_conn_handle records.
users

Listsall active users. Returns alist of megaco_mid()'s.
n_active_requests

Returns an integer representing the number of requests that has originated from this Erlang node and still are
active (and therefore consumes system resources).

n_active_replies
Returns an integer representing the number of repliesthat has originated from this Erlang node and still are active
(and therefore consumes system resources).

n_acti ve_connections

Returns an integer representing the number of active connections.

info() -> Info
Types.
Info = [{Key, Val ue}]

Thisfunction produces alist of information about the megaco application. Such as users and their config, connections
and their config, statistics and so on.

Thisinformation can be produced by the functionsuser_info, conn_info, system _info and get_statsbut thisisasimple
way to get it all at once.

connect (ReceiveHandle, RemoteMid, SendHandle, ControlPid) -> {ok, ConnHandle}
| {error, Reason}

connect (ReceiveHandle, RemoteMid, SendHandle, ControlPid, Extra) -> {ok,
ConnHandle} | {error, Reason}

Types:
Recei veHandl e = #negaco_recei ve_handl e{}
RemoteM d = prelinmnary_md | nmegaco_mnid()
SendHandl e = term()
Control Pid = pid()
ConnHandl e = #negaco_conn_handl e{}
Reason = connect _reason() | handl e_connect _reason() | term))

connect _reason() = {no_such_user, Local Md} | {already_connected,
ConnHandl e} | tern()

handl e_connect _error() = {connection_refused, ConnData, Errorlnfo} |
term))
Local M d = nmegaco_m d()
ConnData = term)
Errorinfo = term))
Extra = tern()
Establish a"virtual" connection

Activates a connection to a remote user. When this is done the connection can be used to send messages (with
SendMod:send _message/2). The ControlPid is the identifier of a process that controls the connection. That process

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 41

megaco

will be supervised and if it dies, thiswill be detected and the UserM od:handle_disconnect/2 callback function will be
invoked. See the megaco_user modulefor more info about the callback arguments. The connection may also explicitly
be deactivated by invoking megaco:disconnect/2.

The ControlPid may be the identity of a process residing on another Erlang node. This is useful when you want to
distribute a user over several Erlang nodes. In such a case one of the nodes has the physical connection. When a user
residing on one of the other nodes needs to send a request (with megaco:call/3 or megaco:cast/3), the message will
encoded on the originating Erlang node, and then be forwarded to the node with the physical connection. When the
reply arrives, it will be forwarded back to the originator. The distributed connection may explicitly be deactivated by a
local call to megaco:disconnect/2 or implicitly when the physical connection isdeactivated (with megaco:disconnect/2,
killing the controlling process, halting the other node, ...).

The cal of this function will trigger the callback function UserMod:handle_connect/2 to be invoked. See the
megaco_user module for more info about the callback arguments.

A connection may be established in several ways:
provi sioned MD

The MG may explicitly invoke megaco:connect/4 and use a provisioned MID of the MGC as the RemoteMid.
upgrade prelimnary MD

The MG may explicitly invoke megaco:connect/4 with the atom 'preliminary_mid' as a temporary MID of the
MGC, send an intial message, the Service Change Request, to the MGC and then wait for an initial message, the
Service Change Reply. When the reply arrives, the Megaco application will pick the MID of the MGC from the
message header and automatically upgrade the connection to be a"normal” connection. By using this method of
establishing the connection, the callback function UserMod:handle_connect/2 to be invoked twice. First with a
ConnHandle with the remote_mid-field set to preliminary_mid, and then when the connection upgrade is done
with the remote_mid-field set to the actual MID of the MGC.

autonmtic

Whenthe MGC receivesitsfirst message, the Service Change Request, the M egaco application will automatically
establish the connection by using the MG MID found in the message header as remote mid.

di stri but ed

When a user (MG/MGC) is distributed over several nodes, it is required that the node hosting the connection
already has activated the connection and that it isin the "norma" state. The RemoteMid must be areal Megaco
MID and not apreliminary_mid.

Aninitial megaco_receive_handle record may be obtained with megaco:user_info(UserMid, receive_handl€)

The send handleisprovided by the preferred transport module, e.g. megaco_tcp, megaco_udp. Read the documentation
about each transport modul e about the details.

The connect isdonein two steps: first aninternal connect i on set up and then by calling the user handle_connect
callback function. The first step could result in an error with Reason = connect _r eason() and the second an
error with Reason = handl e_connect _reason():

connect _reason()
An error with this reason is generated by the megaco application itself.
handl e_connect _reason()

An error with this reason is caused by the user handle_connect callback function either returning an error or an
invalid value.

Extracanbeanyt er n() excepttheatomi gnor e_ext r a. Itispassed (back) to the user viathe callback function
handle_connect/3.

42 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

disconnect(ConnHandle, DiscoReason) -> ok | {error, ErrReason}
Types.

ConnHandl e = conn_handl e()

Di scoReason = term()

Err Reason = term()

Tear down a"virtua" connection

Causesthe UserMod:handle_disconnect/2 callback function to beinvoked. See the megaco_user modulefor moreinfo
about the callback arguments.

call(ConnHandle, Actions, Options) -> {ProtocolVersion, UserReply}
Types:
ConnHandl e = conn_handl e()
Actions = action_reqs() | [action_reqgs()]
action_reqs() = binary() | [action_request()]
Options = [send_option()]
send_option() = {request_tiner, megaco_tinmer()} | {long_request tiner,
megaco_tinmer()} | {send_handle, tern()} | {protocol _version, integer()}
{call _proxy_gc_timeout, call_proxy_gc_tineout()}

Prot ocol Version = integer()

UserReply = user_reply() | [user_reply()]

user_reply() = success() | failure()

success() = {ok, result()} | {ok, result(), extra()}
result() = nmessage_result() | segnent_result()

message _result() action_reps()

segnent _result() = segnents_ok()

failure() = {error, reason()} | {error, reason(), extra()}

reason() = nessage_reason() | segnent _reason() | user_cancel reason()
send_reason() | other_reason()

nmessage_reason() = error_desc()

segment _reason() = {segnment, segnments_ok(), segnments err()}
{segment _timeout, nmissing_segnents(), segnents_ok(), segnents_err()}

segnments_ok() = [segnent_ok()]

segment _ok() = {segnent_no(), action_reps()}

segnments_err() = [segnent_err()]

segrment _err() = {segnent_no(), error_desc()}

m ssi ng_segnents() = [segnent_no()]

user_cancel _reason() = {user_cancel, reason_for_user_cancel ()}
reason_for_user_cancel () = term)

send_reason() = send_cancell ed_reason() | send_failed_reason()

send_cancel | ed_reason() = {send_nessage_cancel | ed,
reason_for_send_cancel ()}

reason_for_send _cancel () = term)
send_failed_reason() = {send_nessage _failed, reason_for_send failure()}
reason_for_send failure() = tern()

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 43

megaco

other _reason() = {wong md, WongMd, RghtMd, TR} | term)
WongMd m d()
RightMd = md()
TR = transaction_reply()
action_reps() = [action_reply()]
call _proxy gc tineout() = integer() >= 0
extra() =term)
Sends one or more transaction request(s) and waits for the reply.

When sending one transaction in a message, Act i ons should be acti on_reqs() (User Reply will then be
user _repl y()). When sending several transactions in a message, Act i ons should be [acti on_reqs()]

(User Repl y will thenbe[user _repl y()]). Each element of thelist is part of one transaction.

For some of our codecs (hot binary), it is aso possible to pre-encode the actions, in which case Act i ons will be

either abi nary() or[binary()].

The function returns when the reply arrives, when the request timer eventually times out or when the outstanding

reguests are explicitly cancelled.

The default values of the send options are obtained by megaco: conn_i nf o(ConnHandl e, |tem . But the

send options above, may explicitly be overridden.

The Pr ot ocol Ver si on version isthe version actually encoded in the reply message.

Atsuccess(),theUser Repl y containsalist of 'ActionReply' records possibly containing error indications.

A nessage_error (), indicates that the remote user has replied with an explicit transactionError.

A user_cancel _error(), indicates that the request has been cancded by the
reason_f or _user_cancel () isthereason givenin the cal to the cancel function.

Asend_error (),indicatesthat the send function of the megaco transport callback modul efailed to send therequest.
There are two separate cases: send_cancel | ed_reason() and send_fai | ed_r eason() . Thefirst is the
result of the send function returning { cancel , Reason} and the second is some other kind of erroneous return

value. See the send_message function for more info.
Anot her _error (), indicates some other error such as timeout.
For moreinfo about theext r a() part of the result, see the note in the user callback module documentation.

cast(ConnHandle, Actions, Options) -> ok | {error, Reason}
Types.

ConnHandl e = conn_handl e()

Actions = action_reqs() | [action_reqgs()]

action_reqs() = binary() | [action_request()]

Options = [send_option()]

send_option() = {request_keep_alive_tineout, request_keep_alive_timeout()}
| {request_tiner, negaco_timer()} | {long_request_tiner, negaco_timer()}
| {send_handle, term()} | {reply_data, reply_data()} | {protocol version,

i nteger()}
request _keep_alive_tineout() = plain | integer() >= 0
Reason = term()

Sends one or more transaction request(s) but does NOT wait for areply

44 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

When sending one transaction in a message, Acti ons should be acti on_reqs(). When sending several
transactions in a message, Acti ons should be [acti on_reqgs()]. Each element of the list is part of one
transaction.

For some of our codecs (hot binary), it is aso possible to pre-encode the actions, in which case Act i ons will be
either abi nary() or[binary()].

The default values of the send options are obtained by megaco:conn_info(ConnHandle, Item). But the send options
above, may explicitly be overridden.

The Protocol Version version is the version actually encoded in the reply message.

The callback function UserMod:handle_trans reply/4 is invoked when the reply arrives, when the request timer
eventually times out or when the outstanding requests are explicitly cancelled. See the megaco_user module for more
info about the callback arguments.

Given as UserData argument to UserMod:handle_trans _reply/4.

encode actions(ConnHandle, Actions, Options) -> {ok, BinOrBins} | {error,
Reason}

Types:
ConnHandl e = conn_handl e()
Actions = action_reqs() | [action_reqgs()]
action_reqs() = [# ActionRequest'{}]
Options = [send_option()]
send_option() = {request _tiner, nmegaco_tinmer()} | {long_request_tiner,
nmegaco_tinmer()} | {send_handle, term()} | {protocol _version, integer()}
BinOrBins = binary() | [binary()]
Reason = term)

Encodes lists of action requests for one or more transaction request(s).

When encoding action requests for one transaction, Act i ons should beact i on_r egs() . When encoding action
reguests for several transactions, Act i ons should be[acti on_reqs()] . Each element of thelist is part of one
transaction.

token tag2string(Tag) -> Result
token tag2string(Tag, EncoderMod) -> Result
token tag2string(Tag, EncoderMod, Version) -> Result
Types.
Tag = aton()
Encoder Mod = pretty | conpact | encoder_nodul e()

encoder _nodul e() = negaco_pretty text_encoder |
nmegaco_conpact text_encoder | atom)

Version = int_version() | atomversion()
int_version() =1 2] 3
atomversion() = vl | v2 | v3
Result = string() | {error, Reason}
Reason = term)

Convert atoken tag to astring

If no encoder moduleis given, the default is used (which is pretty).

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 45

megaco

If no or an unknown version is given, the best version is used (which isv3).
If no match isfound for Tag, Resul t will be the empty string ([])-

cancel(ConnHandle, CancelReason) -> ok | {error, ErrReason}
Types:

ConnHandl e = conn_handl e()

Cancel Reason = term)

ErrReason = term))

Cancel all outstanding messages for this connection

This causes outstanding megaco:call/3 requests to return. The callback functions UserMod:handle _reply/4 and
UserMod:handle_trans ack/4 are also invoked where it applies. See the megaco_user module for moreinfo about the
callback arguments.

process received message(ReceiveHandle, ControlPid, SendHandle, BinMsg) -> ok

process received message(ReceiveHandle, ControlPid, SendHandle, BinMsg,
Extra) -> ok

Types:
Recei veHandl e = #megaco_r ecei ve_handl| e{}
Control Pid = pid()
SendHandl e = term()

Bi nMsg = binary()
Extra = tern()
Process a received message

This function is intended to be invoked by some transport modules when get an incoming message. Which transport
that actually is used is up to the user to choose.

The message is delivered as an Erlang binary and is decoded by the encoding module stated in the receive handle
together with its encoding config (also in the receive handle). Depending of the outcome of the decoding various
callback functions will be invoked. See megaco _user for more info about the callback arguments.

The argument Ext r a isjust an opague data structure passed to the user viathe callback functionsin the user callback
module. Note however that if Ext r a has the value ext r a_undef i ned the argument will be ignored (same as
if process_recei ved_nessage/ 4 had been called). See the documentation for the behaviour of the callback
module, megaco_user, for more info.

Note that all processing is done in the context of the calling process. A transport module could call this function via
one of the spawn functions (e.g. spawn_opt). Seealsor ecei ve_nessage/ 4, 5.

If the message cannot be decoded the following callback function will be invoked:
* UserMod:handle_syntax_error/3

If the decoded message instead of transactions contains a message error, the following callback function will be
invoked:

e UserMod:handle_message error/3

If the decoded message happens to be received before the connection is established, a new "virtual" connection is
established. Thisistypically the case for the Media Gateway Controller (MGC) upon the first Service Change. When
this occurs the following callback function will be invoked:

e UserMod:handle_connect/2

46 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

For each transaction request in the decoded message the following callback function will be invoked:
e UserMod:handle_trans request/3

For each transaction reply in the decoded message the reply is returned to the user. Either the originating function
megaco:call/3 will return. Or in case the originating function was megaco:case/3 the following callback function will
be invoked:

e UserMod:handle trans reply/4

When a transaction acknowledgement is received it is possible that user has decided not to bother about
the acknowledgement. But in case the return value from UserMod:handle trans request/3 indicates that the
acknowledgement isimportant the following callback function will be invoked:

e UserMod:handle_trans ack/4
See the megaco_user module for more info about the callback arguments.

receive message(ReceiveHandle, ControlPid, SendHandle, BinMsg) -> ok
receive message(ReceiveHandle, ControlPid, SendHandle, BinMsg, Extra) -> ok
Types.

Recei veHandl e = #nmegaco_recei ve_handl| e{}

Control Pid = pid()

SendHandl e = term()

Bi nMsg = binary()

Extra = term()
Process a received message

Thisisacallback function intended to be invoked by some transport modules when get an incoming message. Which
transport that actually is used is up to the user to choose.

In principle, thisfunction callsthepr ocess_r ecei ved_nessage/ 4 function viaaspawn to perform the actual
processing.

For further information see the process_received_message/4 function.

parse digit map(DigitMapBody) -> {ok, ParsedDigitMap} | {error, Reason}
Types:

Di gi t MapBody = string()

Par sedDi gi t Map = parsed_digit_map()

parsed digit_map() = term)

Reason = term()
Parses a digit map body

Parses a digit map body, represented as a list of characters, into a list of state transitions suited to be evaluated by
megaco:eval_digit_map/1,2.

eval digit map(DigitMap) -> {ok, MatchResult} | {error, Reason}
eval digit map(DigitMap, Timers) -> {ok, MatchResult} | {error, Reason}
Types.

DigitMap = #' DigitMapVal ue' {} | parsed_digit_map()

parsed digit_map() = term)

ParsedDigitMap = term))

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 47

megaco

Timers = ignore() | reject()

ignore() = ignore | {ignore, digit_map_value()}

reject() =reject | {reject, digit_map value()} | digit_map_val ue()
Mat chResult = {Kind, Letters} | {Kind, Letters, Extra}

Kind = kind()

kind() = full | unanbi guous

Letters = [letter()]

letter() = $0..%9 | $a .. $k

Extra = letter()

Reason = term()

Collect digit map letters according to the digit map.

When evaluating a digit map, a state machine waits for timeouts and letters reported by megaco:report_digit_event/2.
The length of the various timeouts are defined in the digit_map_value() record.

When a complete sequence of valid events has been received, the result isreturned as a list of letters.

There are two options for handling syntax errors (that is when an unexpected event is received when the digit map
evaluator is expecting some other event). The unexpected events may either be ignored or rejected. The latter means
that the evaluation is aborted and an error is returned.

report digit event(DigitMapEvalPid, Events) -> ok | {error, Reason}
Types:
Di gi t MapEval Pid = pid()
Events = Event | [Event]
Event = letter() | pause() | cancel ()
letter() = $0..$9 | $a .. $k | $A .. $K
pause() = one_second() | ten_seconds()
one_second() = $s | $S
ten_seconds() = $l | $L
cancel () = $z | $Z | cancel
Reason = term()
Send one or more events to the event collector process.
Send one or more events to a process that is evaluating a digit map, that is a process that is executing
megaco:eval_digit map/1,2.
Notethat theevents$s | $S,1 | $Land$z | $Z hasnothing to do with the timers using the same characters.

test digit event(DigitMap, Events) -> {ok, Kind, Letters} | {error, Reason}
Types:

DigitMap = # DigitMapVal ue' {} | parsed_digit_map()

parsed digit_map() = term)

ParsedDigitMap = term))

Timers = ignore() | reject()

ignore() = ignore | {ignore, digit_map_value()}

reject() =reject | {reject, digit_map _value()} | digit_map_val ue()

Di gi t MapEval Pid = pid()

48 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

Events = Event | [Event]

Event = letter() | pause() | cancel ()
Kind = kind()
kind() = full | unanbi guous

Letters = [letter()]
letter() = $0..%$9 | $a .. $k | $A .. $K
pause() = one_second() | ten_seconds()
one_second() = $s | $S
ten_seconds() = $l | $L
cancel () = $z | $Z | cancel
Reason = term()
Feed digit map collector with events and return the result

This function starts the evaluation of a digit map with megaco:eval_digit_map/1 and sends a sequence of eventsto it
megaco:report_digit_event/2 in order to simplify testing of digit maps.

encode sdp(SDP) -> {ok, PP} | {error, Reason}
Types:

SDP = sdp_property_parn() | sdp_property_group() | sdp_property_groups() |
asnl_ NOVALUE

PP = property _parm() | property_group() | property_groups() | asnl NOVALUE
Reason = term()

Encode (generate) an SDP construct.
If aproperty_parn() isfound aspart of the input (SDP) then it isleft unchanged.
This function performs the following transformation:

* sdp() -> property_parm()
e sdp_property_group() -> property_group()
* sdp_property_groups() -> property_groups()

decode sdp(PP) -> {ok, SDP} | {error, Reason}
Types:
PP = property_parm() | property_group() | property_groups() | asnl_ NOVALUE

SDP = sdp() | decode_sdp property group() | decode _sdp_property_groups() |
asnl_NOVALUE

decode_sdp() = sdp() | {property_parm(), DecodeError}
decode_sdp_property _group() = [decode_sdp()]
decode_sdp_property groups() = [decode_sdp property group()]
DecodeError = term)

Reason = term)

Decode (parse) a property parameter construct.

When decoding pr operty_group() orproperty_groups(),thoseproperty parameter constructsthat cannot
be decoded (either because of decode error or because they are unknown), will be returned as a two-tuple. The first
element of which will bethe (undecoded) property parameter and the other the actual reason. This meansthat the caller
of this function has to expect not only sdp-records, but also this two-tuple construct.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 49

megaco

This function performs the following transformation:

* property_parm() -> sdp()
e property_group() -> sdp_property_group()
* property_groups() -> sdp_property_groups()

versionsl() -> {ok, VersionInfo} | {error, Reason}
versions2() -> {ok, Info} | {error, Reason}
Types:
Versionlnfo = [version_info()]
version_info() = term))
Reason = term()
Utility functions used to retrieve some system and application info.

The difference between the two functionsisin how they get the modulesto check. ver si ons1 usesthe app-file and
ver si ons2 usesthefunctionappl i cati on: get _key.

print version info() -> void()
print version info(VersionInfo) -> void()
Types:
Versionlnfo = [version_info()]
version_info() = term)

Utility function to produce a formated printout of the versions info generated by thever si ons1 and ver si ons2
functions.

The function print_version_info/0 uses the result of function version1/0 as Ver si onl nf o.

Example:

{ok, V} = megaco:versionsl(), megaco:format versions(V).

enable trace(Level, Destination) -> void()

Types:
Level = max | min | O <= integer() <= 100
Destination = File | Port | HandlerSpec | io
File = string()
Port = integer()

Handl eSpec = {Handl er Fun, Dat a}
Handl eFun = fun() (two argunents)
Data = term))

This function is used to start megaco tracing at agiven Level and direct result to the given Dest i nat i on.
It starts atracer server and then sets the proper match spec (according to Level).

In the case when Dest i nat i on isFi | e, the printable megaco trace events will be printed to the file Fi | e using
plaini o: f or mat/ 2.

In the case when Desti nati on isi o, the printable megaco trace events will be printed on stdout using plain
io:format/ 2.

50 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco

See dbg for further information.

disable trace() -> void()
This function is used to stop megaco tracing.

set trace(Level) -> void()
Types:
Level = max | min | O <= integer() <= 100
This function is used to change the megaco trace level.
It is assumed that tracing has already been enabled (seeenabl e_t r ace above).

get stats() -> {ok, TotalStats} | {error, Reason}
get stats(GlobalCounter) -> {ok, CounterStats} | {error, Reason}
get stats(ConnHandle) -> {ok, ConnHandleStats} | {error, Reason}
get stats(ConnHandle, Counter) -> {ok, integer()} | {error, Reason}
Types.
Total Stats = [total _stats()]
total _stats() = {conn_handle(), [stats()]} | {global _counter(), integer()}
G obal Counter = gl obal _counter ()
d obal CounterStats = integer()
ConnHandl e = conn_handl e()
ConnHandl eStats = [stats()]
stats() = {counter(), integer()}
Counter = counter()
counter() = nmedOwGat ewayNunTi ner Recovery | medGwGat ewayNunErrors
gl obal _counter() = nedGwGat ewayNunerrors
Reason = term()
Retreive the (SNMP) statistic counters maintained by the megaco application. The global counters handle events that

cannot be attributed to a single connection (e.g. protocol errors that occur before the connection has been properly
setup).

reset stats() -> void()
reset stats(ConnHandle) -> void()
Types.

ConnHandl e = conn_handl e()
Reset all related (SNMP) statistics counters.

test request(ConnHandle, Version, EncodingMod, EncodingConfig, Actions) ->
{MegaMsg, EncodeRes}

Types.
ConnHandl e = conn_handl e()
Version = integer()

Encodi ngvbd = atom()

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 51

megaco

Encodi ngConfig = Encodi ng configuration
Actions = A list
MegaMsg = #' MegacoMessage' {}
EncodeRes = {ok, Bin} | {error, Reason}
Bin = binary()
Reason = term()

Testsif the Actions argument is correctly composed.

This function is only intended for testing purposes. It's supposed to have a same kind of interface as the call or cast
functions (with the additions of the Encodi nghbd and Encodi ngConf i g arguments). It composes a complete
megaco message end attempts to encode it. The return value, will be a tuple of the composed megaco message and
the encode result.

test reply(ConnHandle, Version, EncodingMod, EncodingConfig, Reply) ->
{MegaMsg, EncodeRes}

Types:
ConnHandl e = conn_handl e()
Version = integer()

Encodi ngvbd = atom()
Encodi ngConfig = A li st
Reply = actual _reply()
MegaMsg = #' MegacoMessage' {}
EncodeRes = {ok, Bin} | {error, Reason}
Bin = binary()
Reason = term()
Testsif the Reply argument is correctly composed.

This function is only intended for testing purposes. It's supposed to test the act ual _repl y() return value of
the callback functions handle trans request and handle trans long request functions (with the additions of the
Encodi ngMbd and Encodi ngConfi g arguments). It composes a complete megaco message end attempts to
encode it. The return value, will be atuple of the composed megaco message and the encode resullt.

52 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_edist_compress

megaco_edist_compress

Erlang module

The following functions should be exported from anegaco_edi st _conpr ess callback module:

Exports

Module:encode(R, Version) -> T

Types:
R = megaco_encoder: negaco_nessage() | negaco_encoder:transaction()
| megaco_encoder:action_reply() | negaco_encoder: action_request() |
nmegaco_encoder: conmand_r equest ()

Ver si on = nmegaco_encoder : prot ocol _version()

T =term)
Compress a megaco component. The erlang dist encoder makes no assumption on the how or even if the component
is compressed.

Module:decode(T, Version) -> R
Types:
T =term)
Ver si on = nmegaco_encoder : prot ocol _version()

R = negaco_encoder: negaco_nessage() | negaco_encoder:transaction()
| megaco_encoder:action_reply() | negaco_encoder: action_request() |
megaco_encoder: command_r equest ()

Decompress a megaco component.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 53

megaco_encoder

megaco_encoder

Erlang module

The following functions should be exported from anmegaco_encoder callback module:

DATA TYPES

Note that the actual definition of (some of) these records depend on the megaco protocol version used. For instance,
the' Transacti onRepl y' record has two more fields in version 3, so a simple erlang type definition cannot

be made here.

protocol version() integer()

segment _no() integer()

megaco _message() = #'MegacoMessage{}'

transaction() = {transactionRequest,
{transactionPending,
{transactionReply,
{transactionResponseAck,
{segmentReply,

transaction request()} |
transaction_reply()} |
transaction pending()} |
transaction response ack()} |
segment reply()}

transaction request() = #'TransactionRequest'{}
transaction pending() = #'TransactionPending'{}
transaction reply() = #'TransactionReply'{}
transaction response ack() = [transaction ack()]
transaction ack() = #'TransactionAck'{}

segment reply() = #'SegmentReply'{}

action request() = #'ActionRequest'{}

action reply() = #'ActionReply'{}
command_request() = #'CommandRequest'{}
error_desc() = #'ErrorDescriptor'{}

Exports

Module:encode message(EncodingConfig, Version, Message) -> {ok, Bin} | Error
Types:

Encodi ngConfig = list()
Version = integer()
Message = negaco_nessage()

Bin = binary()
Error = term)
Encode a megaco message.

Module:decode message(EncodingConfig, Version, Bin) -> {ok, Message} | Error
Types.

Encodi ngConfig = list()
Version = integer() | dynamc
Message = negaco_nessage()

Bin = binary()

54 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_encoder

Error = term()
Decode a megaco message.

Notethat if the Version argumentisdynami ¢, thedecoder should try to figure out the actual version from the message
itself and then use the proper decoder, e.g. version 1.

If on the other hand the Version argument is an integer, it means that this is the expected version of the message and
the decoder for that version should be used.

Module:decode mini message(EncodingConfig, Version, Bin) -> {ok, Message} |
Error

Types:
Encodi ngConfig = list()
Version = integer() | dynamc

Message = negaco_nessage()
Bin = binary()
Error = term)
Perform aminimal decode of a megaco message.

The purpose of this function is to do a minimal decode of Megaco message. A successfull result is
a ' MegacoMessage' in which only version and mid has been initiated. This function is used by the
megaco_messenger module when the decode_nessage/ 3 function fails to figure out the mid (the actual sender)
of the message.

Note again that a successfull decode only returns a partially initiated message.

Module:encode transaction(EncodingConfig, Version, Transaction) -> OK | Error

Types:
Encodi ngConfig = list()
Version = integer()

Transaction = transaction()

XK = {ok, Bin}

Bin = binary()

Error = {error, Reason}

Reason = not i npl enented | O her Reason
O her Reason = tern()

Encode amegaco transaction. If this, for whatever reason, is not supported, the function should return the error reason
not _i npl ement ed.

This functionality is used both when the transaction sender is used and for segmentation. So, for either of those to
work, this function must be fully supported!

Module:encode action requests(EncodingConfig, Version, ARs) -> OK | Error

Types:
Encodi ngConfig = list()
Version = integer()

ARs = action_requests()
action_requests() = [action_request()]
X = {ok, Bin}

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 55

megaco_encoder

Bin = binary()

Error = {error, Reason}

Reason = not i npl enented | O her Reason
O her Reason = term)

Encode megaco action requests. This function is called when the user calls the function encode_actions/3. If that
function is never used or if the codec cannot support this (the encoding of individual actions), then return with error

reason not _i npl enent ed.

Module:encode action reply(EncodingConfig, Version, AR) -> OK | Error

Types:
Encodi ngConfig = list()
Version = integer()

AR = action_reply()

XK = {ok, Bin}

Bin = binary()

Error = {error, Reason}

Reason = not i npl enented | O her Reason
O her Reason = tern()

Encode amegaco action reply. If this, for whatever reason, is not supported, the function should return the error reason

not _i npl ement ed.

This function is used when segmentation has been configured. So, for this to work, this function must be fully

supported!

56 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_transport

megaco_transport

Erlang module

The following functions should be exported from armegaco_t ransport callback module:

e send_message/2 [mandat or y]
e send_message/3 [opt i onal]
e resend_message/2 [opt i onal]

Exports

Module:send message(Handle, Msg) -> ok | {cancel, Reason} | Error
Module:send message(Handle, Msg, Resend) -> ok | {cancel, Reason} | Error
Types.

Handl e = term)

Msg = binary() | iolist()

Resend = bool ean()

Reason = term)

Error = term()

Send a megaco message.

If thefunctionreturns{ cancel , Reason}, thismeansthe transport module decided not to send the message. This
isnot an error. No error messages will be issued and no error counters incremented. What actions this will result in
depends on what kind of message was sent.

In the case of requests, megaco will cancel the message in much the same way as if megaco: cancel had been
called (after a successfull send). The information will be propagated back to the user differently depending on how
the request(s) where issued: For requests issued using megaco:call, the info will be delivered in the return value. For
requestsissued using megaco: cast theinfowill be delivered viaacall to the callback function handle_trans_reply.

In the case of reply, megaco will cancel the reply and information of thiswill be returned to the user viaacall to the
callback function handle_trans_ack.

Thefunction send_nessage/ 3 will only be called if the resend_indication config option has been set to the value
f I ag. Thethird argument, Resend then indicates if the message send is aresend or not.

Module:resend message(Handle, Msg) -> ok | {cancel, Reason} | Error
Types.

Handl e = term)

Msg = binary() | iolist()

Reason = term)

Error = tern()

Re-send a megaco message.

Note that this function will only be called if the user has set the resend_indication config optiontot r ueand itisin
fact a message resend. If not both of these condition's are meet, send_nessage will be called.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 57

megaco_transport

If thefunctionreturns{ cancel , Reason}, thismeansthe transport module decided not to send the message. This
isnot an error. No error messages will be issued and no error counters incremented. What actions this will result in
depends on what kind of message was sent.

In the case of requests, megaco will cancel the message in much the same way as if negaco: cancel had been
called (after a successfull send). The information will be propagated back to the user differently depending on how
the request(s) where issued: For requests issued using megaco:call, the info will be delivered in the return value. For
requestsissued using megaco: cast theinfowill be delivered viaacall to the callback function handle_trans_reply.

In the case of reply, megaco will cancel the reply and information of thiswill be returned to the user viaacall to the
callback function handle_trans_ack.

58 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_tcp

megaco_tcp

Erlang module

This module contains the public interface to the TPKT (TCP/IP) version transport protocol for Megaco/H.248.

Exports

start _transport() -> {ok, TransportRef}
Types:
Transport Ref = pid()

This function is used for starting the TCP/IP transport service. Use exit(TransportRef, Reason) to stop the transport
service.

listen(TransportRef, ListenPortSpecList) -> ok
Types:
TransportRef = pid() | regname()
OptionLi stPerPort = [Option]
Option = {port, integer()} | {options, list()} | {receive_handle, term)}
| {inet_backend, default | inet | socket}

Thisfunctionisused for starting new TPKT listening socket for TCP/IP. The option list containsthe socket definitions.

connect(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error,
Reason}

Types:
TransportRef = pid() | regname()
OptionList = [Option]
Option = {host, IpAddr} | {port, integer()} | {options, list()} |
)}

{receive_handle, term()} | {nodule, aton(| {inet_backend, default |
i net | socket}

Handl e = socket handl e()
Control Pid = pid()
Reason = term()
This function is used to open a TPKT connection.
nodul e

This option makes it possible for the user to provide their own callback module. Ther ecei ve_nessage/ 4
or process_recei ved_nessage/ 4 functions of this module is called when a new message is received.
Which oneis called depends on the size of the message;

smal |

receive_message
| arge

process received message
Default value is megaco.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 59

megaco_tcp

close(Handle) -> ok
Types:
Handl e = socket handl e()
This function isused for closing an active TPKT connection.

socket (Handle) -> Socket

Types:
Handl e = socket handl e()
Socket = inet_socket ()

Thisfunctionisused to convert asocket_handle() to ainet_socket(). inet_socket() isaplain socket, seetheinet module
for more info.

send message(Handle, Message) -> ok
Types:

Handl e = socket handl e()

Message = binary() | iolist()

Sends a message on a connection.

block(Handle) -> ok
Types:
Handl e = socket handl e()
Stop receiving incoming messages on the socket.

unblock(Handle) -> ok
Types:
Handl e = socket _handl e()
Starting to receive incoming messages from the socket again.

upgrade receive handle(ControlPid) -> ok
Types:
Control Pid = pid()
Update the receive handle of the control process (e.g. after having changed protocol version).

get stats() -> {ok, TotalStats} | {error, Reason}
get stats(SendHandle) -> {ok, SendHandleStats} | {error, Reason}
get stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}
Types:
Total Stats = [send_handl e_stats()]
total _stats() = {send_handle(), [stats()]}
SendHandl e = send_handl e()
SendHandl eStats = [stats()]
Counter = tcp_stats_counter()
CounterStats = integer()

60 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_tcp

stats() = {tcp_stats_counter(), integer()}

tcp_stats_counter() = nmedGwGat ewayNum nMessages |
medGw Gat ewayNum nCctets | nmedGaw Gat eway Nunut Messages |
medGwy Gat ewayNunfOut Oct et s | nedGwyGat ewayNuner r or s

Reason = term)
Retreive the TCP related (SNMP) statistics counters.

reset stats() -> void()
reset stats(SendHandle) -> void()
Types:

SendHandl e = send_handl e()
Reset all TCP related (SNMP) statistics counters.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 61

megaco_udp

megaco_udp

Erlang module

This module contains the public interface to the UDP/IP version transport protocol for Megaco/H.248.

Exports

start _transport() -> {ok, TransportRef}
Types:
Transport Ref = pid()

This function is used for starting the UDP/IP transport service. Use exit(TransportRef, Reason) to stop the transport
service.

open(TransportRef, OptionList) -> {ok, Handle, ControlPid} | {error, Reason}
Types:

TransportRef = pid() | regname()

OptionList = [option()]

option() = {port, integer()} | {options, list()} | {receive_handle,

receive_handle()} | {nmodule, atom()} | {inet_backend, default | inet |
socket }

Handl e = socket handl e()
receive_handle() = term)
Control Pid = pid()
Reason = term()
This function is used to open an UDP/IP socket.
nodul e

The option makes it possible for the user to provide their own callback module. The functions
recei ve_nessage/ 4 orprocess_recei ved_nessage/ 4 of thismoduleiscalled when anew message
is received. Which one depends on the size of the message:

smal |

receive_message
| arge

process_received message
Default value is megaco.

close(Handle, Msg) -> ok
Types:
Handl e = socket handl e()
Msg
This function is used for closing an active UDP socket.

62 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_udp

socket (Handle) -> Socket

Types.
Handl e = socket handl e()
Socket = i net_socket ()

Thisfunctionisused to convert asocket_handle() to ainet_socket(). inet_socket() isaplain socket, seetheinet module
for more info.

create send handle(Handle, Host, Port) -> send handle()
Types:

Handl e = socket _handl e()

Host {A, B C D | string()

Por t i nteger ()

Createsasend handlefrom atransport handle. The send handleisintended to be used by megaco_udp:send_message/2.

send message(SendHandle, Msg) -> ok
Types:
SendHandl e = send_handl e()
Message = binary() | iolist()
Sends a message on a socket. The send handle is obtained by megaco_udp:create_send handle/3. Increments the

NumOutM essages and NumOutOctets countersif message successfully sent. In case of afailureto send, the NumErrors
counter is not incremented. Thisis done elsewhere in the megaco app.

block(Handle) -> ok
Types.
Handl e = socket handl e()

Stop receiving incoming messages on the socket.

unblock(Handle) -> ok
Types:
Handl e = socket handl e()
Starting to receive incoming messages from the socket again.

upgrade receive handle(ControlPid, NewHandle) -> ok
Types:

Control Pid = pid()

NewHandl e = recei ve_handl e()

receive_handle() = term)

Update the receive handle of the control process (e.g. after having changed protocol version).

get stats() -> {ok, TotalStats} | {error, Reason}

get stats(SendHandle) -> {ok, SendHandleStats} | {error, Reason}

get stats(SendHandle, Counter) -> {ok, CounterStats} | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 63

megaco_udp

Total Stats = [total _stats()]

total _stats() = {send_handle(), [stats()]}
SendHandl e = send_handl e()

SendHandl eStats = [stats()]

Counter = udp_stats_counter()

CounterStats = integer()

stats() = {udp_stats_counter(), integer()}
tcp_stats_counter() = nmedGwGat ewayNum nMessages |

medGw Gat ewayNum nCctets | nmedGw Gat eway Nunut Messages |

medGwy Gat ewayNunfOut Cct et s | nedGw Gat ewayNuner r or s
Reason = term()

Retreive the UDP related (SNMP) statistics counters.

reset stats() -> void()
reset stats(SendHandle) -> void()
Types:

SendHandl e = send_handl e()
Reset all TCP related (SNMP) statistics counters.

64 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_user

megaco_user

Erlang module

This modul e defines the callback behaviour of Megaco users. A megaco_user compliant callback module must export
the following functions:

e handle _connect/2,3

e handle_disconnect/3

e handle_syntax_error/3,4

e handle_message error/3,4

e handle_trans request/3,4

e handle_trans long_request/3,4

e handle_trans reply/4,5

e handle trans ack/4,5

e handle_unexpected trans/3,4

e handle_trans request_abort/4,5

* handle_segment_reply/5,6

The semantics of them and their exact signatures are explained bel ow.

Theuser _ar gs configuration parameter which may be used to extend the argument list of the callback functions.
For example, the handle_connect function takes by default two arguments:

handle connect(Handle, Version)

butif theuser _ar gs parameter isset to alonger list, suchas[SormePi d, SoreTabl eRef] , the callback function
is expected to have these (in this case two) extra arguments last in the argument list:

handle_connect(Handle, Version, SomePid, SomeTableRef)

Must of the functions below has an optiona Extra argument (e.g. handle _unexpected trang/4). The
functions which takes this argument will be called if and only if one of the functions receive_message/5 or
process received message/5 was called with the Ext r a argument different thani gnor e_ext r a.

DATA TYPES

action request() = #'ActionRequest'{}
action reply() = #'ActionReply'{}

error _desc() = #'ErrorDescriptor'{}
segment_no() = integer()
conn_handle() = #megaco conn_handle{}

Therecord initially returned by megaco: connect/ 4, 5. Itidentifiesa"virtua" connection and may be reused after
areconnect (disconnect + connect).

protocol version() = integer()

Is the actual protocol version. In most cases the protocol version is retrieved from the processed message, but there
are exceptions:;

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 65

megaco_user

« Whenhandl e_connect/ 2, 3 istriggered by an explicit call to megaco: connect/ 4, 5.
* handl e_di sconnect/3
e handle_syntax_error/3

In these cases, the Protocol Version default version is obtained from the static connection configuration:;
e megaco: conn_i nf o(ConnHandl e, protocol version).

Exports

handle connect(ConnHandle, ProtocolVersion) -> ok | error |
{error,ErrorDescr}

handle connect(ConnHandle, ProtocolVersion, Extra) -> ok | error |
{error,ErrorDescr}

Types:

ConnHandl e = conn_handl e()

Pr ot ocol Versi on = protocol _version()

ErrorDescr = error_desc()

Extra = tern()
Invoked when a new connection is established
Connections may either be established by an explicit call to megaco:connect/4 or implicitly at the first invocation of
megaco:receive_message/3.
Normally a Media Gateway (MG) connects explicitly while aMedia Gateway Controller (MGC) connects implicitly.
At the Media Gateway Controller (MGC) side it is possible to rgject a connection request (and send a message error
reply to the gateway) by returning{ err or, ErrorDescr} orsimply er r or which generates an error descriptor

with code 402 (unauthorized) and reason "Connection refused by user” (thisis also the case for all unknown resuilts,
such as exit signals or throw).

See note above about the Ext r a argument in handl e_nessage_error/ 4.

handl e_connect / 3 (with Ext r a) can also be called as aresult of a call to the megaco:connect/5 function (if that
function is called with the Ext r a argument different thani gnor e_extr a.

handle disconnect(ConnHandle, ProtocolVersion, Reason) -> ok
Types:

ConnHandl e = conn_handl e()

Pr ot ocol Versi on = protocol _version()

Reason = term()

Invoked when a connection is teared down

The disconnect may either be made explicitly by acall to megaco:disconnect/2 or implicitly when the control process
of the connection dies.

handle syntax error(ReceiveHandle, ProtocolVersion, DefaultED) -> reply |
{reply, ED} | no _reply | {no _reply, ED}

handle syntax error(ReceiveHandle, ProtocolVersion, DefaultED, Extra) ->
reply | {reply, ED} | no reply | {no _reply, ED}

Types:

66 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_user

Recei veHandl e = recei ve_handl e()

Pr ot ocol Versi on = protocol _version()
Defaul t ED = error_desc()

ED = error_desc()

Extra = tern()

Invoked when a received message had syntax errors

Incoming messagesis delivered by megaco:receive message/4 and normally decoded successfully. But if the decoding
failed thisfunctioniscalled in order to decideif the originator should get areply message (reply) or if thereply silently
should be discarded (no_reply).

Syntax errorsaredetected locally on thisside of the protocol and may have many causes, e.g. amalfunctioning transport
layer, wrong encoder/decoder selected, bad configuration of the selected encoder/decoder etc.

The error descriptor defaultsto Def aul t ED, but can be overridden with an alternate one by returning{ r epl y, ED}
or{no_reply, ED} instead of r epl y and no_r epl y respectively.

Any other return values (including exit signals or throw) and the Def aul t EDwill be used.

See note above about the Ext r a argument in handl e_synt ax_error/ 4.

handle message error(ConnHandle, ProtocolVersion, ErrorDescr) -> ok
handle message error(ConnHandle, ProtocolVersion, ErrorDescr, Extra) -> ok
Types:

ConnHandl e = conn_handl e()

Pr ot ocol Versi on = protocol _version()

ErrorDescr = error_desc()

Extra = tern()

Invoked when a received message just contains an error instead of alist of transactions.

Incoming messages is delivered by megaco:receive message/4 and successfully decoded. Normally a message
contains alist of transactions, but it may instead contain an ErrorDescriptor on top level of the message.

Message errors are detected remotely on the other side of the protocol. And you probably don't want to reply toit, but
it may indicate that you have outstanding transactions that not will get any response (request -> reply; reply -> ack).

See note above about the Ext r a argument in handl e_nessage_error/ 4.

handle trans request(ConnHandle, ProtocolVersion, ActionRequests) ->
pending() | reply() ignore trans request

(
|
handle trans request(ConnHandle, ProtocolVersion, ActionRequests, Extra) ->
pending() | reply() | ignore_trans_ request

Types.
ConnHandl e = conn_handl e()
Pr ot ocol Versi on = protocol version()
ActionRequests = [action_request()]
Extra = tern()
pendi ng() = {pending, req_data()}
req_data() = term)

reply() = {ack_action(), actual _reply()} | {ack_action(), actual _reply(),
send_options()}

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 67

megaco_user

ack_action() = discard_ack | {handl e_ack, ack data()} |
{handl e_pendi ng_ack, ack_data()} | {handl e_sl oppy_ack, ack data()}

actual _reply() = [action_reply()] | error_desc()

ack data() = term)

send_options() = [send_option()]

send_option() = {reply_tiner, negaco_timer()} | {send_handle, tern()} |
{protocol _version, integer()}

Extra = tern()
Invoked for each transaction request

Incoming messages is delivered by megaco:receive_message/4 and successfully decoded. Normally a message
contains alist of transactions and this function is invoked for each TransactionRequest in the message.

Thisfunction takes alist of 'ActionRequest' records and has three main options:
Return ignore_trans_request

Decide that these action requests shall be ignored completely.
Ret urn pendi ng()

Decide that the processing of these action requests will take a long time and that the originator should get an
immediate "TransactionPending' reply asinterim response. The actual processing of these action requests instead
should be delegated to the the handle_trans long_request/3 callback function with the req_data() as one of its
arguments.

Return reply()

Process the action requests and either return an error_descr() indicating somefatal error or alist of action replies
(wildcarded or not).

If for some reason megaco is unable to deliver the reply, the reason for this will be passed to the user viaa call
to the callback function handle_trans ack, unlessack_acti on() = di scard_ack.

The ack_action() is either:
di scard_ack
Meaning that you don't careif the reply is acknowledged or not.
{handl e_ack, ack_data()} | {handle_ack, ack_data(), send_options()}

Meaning that you want an immediate acknowledgement when the other part receives this transaction reply.
When the acknowledgement eventually isreceived, thehandle_trans _ack/4 callback function will beinvoked
with the ack_data() as one of its arguments. ack_data() may be any Erlang term.

{handl e_pendi ng_ack, ack data()} | {handl e_pendi ng_ack, ack data(),
send_options()}

This has the same effect as the above, if and only if megaco has sent at least one pending message for
this request (during the processing of the request). If no pending message has been sent, then immediate
acknowledgement will not be requested.

Note that this only works as specified if the sent _pendi ng_I i ni t config option has been set to an
integer value.

{handl e_sl oppy_ack, ack_data()}| {handl e_sl oppy_ack, ack_data(),
send_options()}

M eaning that you want an acknowledgement sometime. When the acknowledgement eventually isreceived,
the handle_trans ack/4 callback function will be invoked with the ack_data() as one of its arguments.
ack_data() may be any Erlang term.

68 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_user

Any other return values (including exit signals or throw) will result in an error descriptor with code 500 (internal
gateway error) and the module name (of the callback module€) as reason.

See note above about the Ext r a argument inhandl e_trans_r equest/ 4.

handle trans long request(ConnHandle, ProtocolVersion, RegData) -> reply()
handle trans long request(ConnHandle, ProtocolVersion, ReqData, Extra) ->
reply()
Types:

ConnHandl e = conn_handl e()

Pr ot ocol Versi on = protocol _version()

ReqData = req_data()

Extra = tern()

reg_data() = term))

reply() = {ack_action(), actual _reply()} | {ack_action(), actual _reply(),
send_options()}

ack_action() = discard_ack | {handl e_ack, ack data()} |
{handl e_sl oppy_ack, ack _data()}

actual _reply() = [action_reply()] | error_desc()

ack data() = term)

send_options() = [send_option()]

send_option() = {reply_timer, negaco_tiner()} | {send_handle, ternm()} |
{protocol _version, integer()}

Extra = tern()

Optionally invoked for atime consuming transaction reguest

If this function gets invoked or not is controlled by the reply from the preceding call to handle_trans_request/3. The
handle_trans request/3 function may decide to process the action requests itself or to delegate the processing to this
function.

Thereq_data() argument to this function is the Erlang term returned by handle_trans request/3.

Any other return values (including exit signals or throw) will result in an error descriptor with code 500 (internal
gateway error) and the module name (of the callback module) as reason.

See note above about the Ext r a argument inhandl e_t rans_I ong_r equest/ 4.

handle trans reply(ConnHandle, ProtocolVersion, UserReply, ReplyData) -> ok

handle trans reply(ConnHandle, ProtocolVersion, UserReply, ReplyData, Extra)
-> ok

Types.
ConnHandl e = conn_handl e()
Pr ot ocol Versi on = protocol _version()
User Reply = success() | failure()
success() = {ok, result()}
result() = transaction_result() | segnment_result()
transaction_result() = action_reps()
segnment _result() = {segment_no(), |ast_segnent(), action_reps()}
action_reps() = [action_reply()]

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 69

megaco_user

failure() = {error, reason()} | {error, ReplyNo, reason()}

reason() = transaction_reason() | segment_reason() | user_cancel _reason()
| send_reason() | other_reason()

transaction_reason() = error_desc()
segnent _reason() = {segnent_no(), |ast_segment(), error_desc()}

other _reason() = tinmeout | {segnment _tineout, m ssing segnents()} |
exceeded_recv_pending_linmt | term)

| ast _segnment () = bool ()

m ssi ng_segnments() = [segnent_no()]

user _cancel reason() = {user_cancel, reason_for_user_cancel ()}
reason_for_user_cancel () = term)

send_reason() = send_cancelled reason() | send failed_reason()

send_cancel | ed_reason() = {send_nessage_cancel | ed,
reason_for_send_cancel ()}

reason_for_send_cancel () = term))
send_failed reason() = {send _nessage failed, reason_for_send failure()}
reason_for_send failure() = tern()
ReplyData = reply_data()
Repl yNo = integer() > 0
reply_data() = term)
Extra = tern()
Optionally invoked for a transaction reply

The sender of a transaction request has the option of deciding, whether the originating Erlang process
should synchronously wait (megaco: cal | / 3) for a reply or if the message should be sent asynchronously
(megaco: cast / 3) and the processing of the reply should be delegated this callback function.

Note that if the reply is segmented (split into several smaller messages; segments), then some extra info, segment
number and an indication if all segments of areply has been received or not, isalso included in the User Repl y.

TheRepl yDat a defaultstonegaco: | ookup(ConnHandl e, reply_dat a) , but may beexplicitly overridden
by anegaco: cast/ 3 option in order to forward info about the calling context of the originating process.

Atsuccess(),theUser Repl y either contains:

* Alist of 'ActionReply' records possibly containing error indications.

e A tuple of size three containing: the segment number, the | ast segnment i ndi cat or and finaly alist
of 'ActionReply' records possibly containing error indications. This is of course only possible if the reply was
segmented.

failure() indicatesan loca or external error and can be one of the following:

e Atransaction_reason(), indicatesthat the remote user has replied with an explicit transactionError.

e A segnent _reason(), indicates that the remote user has replied with an explicit transactionError for this
segment. Thisis of course only possible if the reply was segmented.

e A user_cancel _reason(), indicaes that the request has been canceled by the user.
reason_for _user_cancel () isthereason givenin the cal to the cancel function.

e Asend_reason(), indicatesthat the transport module send_message function did not send the message. The
reason for this can be:

70 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_user

e send_cancel | ed_reason() - the message sending was ddiberately cancelled.
reason_for_send_cancel () is the reason given in the cancel return from the send_message
function.

e send _fail ed reason() -anerror occurred while attempting to send the message.
« Anot her _reason(), indicates some other error such as:

e timeout -thereply failed to arrive before the request timer expired.

« {segnent _tineout, m ssing _segnents()} -oneor moresegmentswas not delivered before the
expire of the segment timer.

e« exceeded _recv_pending |imt -thepending limit was exceeded for this request.
See note above about the Ext r a argumentinhandl e_trans_repl y/ 5.

handle trans_ack(ConnHandle, ProtocolVersion, AckStatus, AckData) -> ok

handle trans ack(ConnHandle, ProtocolVersion, AckStatus, AckData, Extra) ->
ok

Types:
ConnHandl e = conn_handl e()
Pr ot ocol Versi on = protocol _version()
AckStatus = ok | {error, reason()}
reason() = user_cancel reason() | send_reason() | other_reason()
user _cancel reason() = {user_cancel, reason_for_user_cancel ()}
send_reason() = send_cancel |l ed_reason() | send_fail ed_reason()

send_cancel | ed_reason() = {send_nessage_cancel | ed,
reason_f or_send_cancel ()}

reason_for_send _cancel () = term)

send_fail ed_reason() = {send_nessage failed, reason_for_send failure()}
reason_for_send failure() = tern()

other _reason() = term)

AckData = ack_data()

ack data() = term)

Extra = ternm()

Optionally invoked for atransaction acknowledgement

If this function gets invoked or nat, is controlled by the reply from the preceding call to handle trans request/3. The
handle trans request/3 function may decide to return { handle_ack, ack_data()} or { handle _sloppy_ack, ack data()}
meaning that you need an immediate acknowledgement of the reply and that this function should be invoked to handle
the acknowledgement.

The ack_data() argument to this function is the Erlang term returned by handle_trans_request/3.

If the AckStatusis ok, it isindicating that thisis a true acknowledgement of the transaction reply.

If the AckStatusis{ error, Reason}, it isan indication that the acknowledgement or even thereply (for which thisisan
acknowledgement) was not delivered, but there is no point in waiting any longer for it to arrive. This happens when:

reply_ timer
Thereply_tinmer eventualy timesout.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 71

megaco_user

reply send failure

When megaco fails to send the reply (see handle_trans_reply), for whatever reason.
cancel

The user has explicitly cancelled the wait (megaco:cancel/2).
See note above about the Ext r a argument in handl e_trans_ack/ 5.

handle unexpected trans(ConnHandle, ProtocolVersion, Trans) -> ok
handle unexpected trans(ConnHandle, ProtocolVersion, Trans, Extra) -> ok
Types:

ConnHandl e = conn_handl e()

Pr ot ocol Versi on = protocol _version()

Trans = # TransactionPending' {} | # TransactionReply'{} |
#' Transacti onResponseAck' {}

Extra = tern()
Invoked when a unexpected message is received

If areply to arequest is not received in time, the megaco stack removes all info about the request from its tables. If a
reply should arrive after this has been done the app has no way of knowing where to send this message. The message
is delivered to the "user" by calling this function on the local node (the node which has the link).

See note above about the Ext r a argument in handl e_unexpect ed_trans/ 4.

handle trans request abort(ConnHandle, ProtocolVersion, TransNo, Pid) -> ok

handle trans_request abort(ConnHandle, ProtocolVersion, TransNo, Pid, Extra)
-> ok

Types:
ConnHandl e = conn_handl e()
Pr ot ocol Versi on = protocol _version()
TransNo = integer()
Pid = undefined | pid()
Extra = term))
Invoked when a transaction request has been aborted

This function is invoked if the originating pending limit has been exceeded. This usually means that a request has
taken abnormally long time to compl ete.

See note above about the Ext r a argument inhandl e_trans_r equest _abort/5.

handle segment reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl) -
> ok

handle segment reply(ConnHandle, ProtocolVersion, TransNo, SegNo, SegCompl,
Extra) -> ok

Types:
ConnHandl e = conn_handl e()
Pr ot ocol Versi on = protocol _version()
TransNo = integer()
SegNo = integer()

72 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_user

SegConpl = asnl NOVALUE | ' NULL'
Extra = term()

This function is called when a segment reply has been received if the segment_reply_ind config option has been set
to true.

Thisisin effect a progress report.
See note above about the Ext r a argument in handl e_segnent _r epl y/ 6.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 73

megaco_flex_scanner

megaco_flex_scanner

Erlang module

This module contains the public interface to the flex scanner linked in driver. The flex scanner performs the scanning
phase of text message decoding.

The flex scanner is written using a tool called flex. In order to be able to compile the flex scanner driver, this tool
has to be available.

By default the flex scanner reports line-number of an error. But it can be built without line-number reporting. Instead
token number isused. Thiswill speed up the scanning some 5-10%. Use - - di sabl e- megaco- f | ex- scanner -
I i neno when configuring the application.

The scanner will, by default, be built as areentrant scanner if the flex utility supportsthis (it depends on the version of
flex). It is possible to explicitly disable this even when flex support this. Use- - di sabl e- megaco-reentrant -
f | ex- scanner when configuring the application.

DATA TYPES

megaco_ports() = term()
megaco_version() = integer() >=1

Exports

start() -> {ok, PortOrPorts} | {error, Reason}
Types:
Port OrPorts = megaco_ports()
Reason = term()
This function is used to start the flex scanner. It locates the library and loads the linked in driver.

On a single core system or if it's a non-reentrant scanner, a single port is created. On a multi-core system with a
reentrant scanner, several portswill be created (one for each scheduler).

Note that the process that calls this function must be permanent. If it dies, the port(s) will exit and the driver unload.

stop(PortOrPorts) -> stopped
Types:
Port Or Ports = megaco_ports()
This function is used to stop the flex scanner. It aso unloads the driver.

is reentrant_enabled() -> Boolean
Types:

Bool ean = bool ean()
Is the flex scanner reentrant or not.

is scanner port(Port, PortOrPorts) -> Boolean

Types:
Port = port()

74 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_flex_scanner

Port OrPorts = megaco_ports()
Bool ean = bool ean()

Checks if aport isaflex scanner port or not (useful when if aport exits).

scan(Binary, PortOrPorts) -> {ok, Tokens, Version, LatestLine} | {error,
Reason, LatestLine}

Types:
Bi nary = binary()
Port Or Ports = megaco_ports()

Tokens = list()
Ver si on = nmegaco_version()
LatestLine = integer()

Reason = term()
Scans a megaco message and generates atoken list to be passed on the parser.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 75

megaco_codec_meas

megaco_codec_meas

Erlang module

This module implements a simple megaco codec measurement tool.
Results are written to file (excel compatible text files) and on stdout.
Note that this module is not included in the runtime part of the application.

Exports

start() -> void()

start(MessagePackage) -> void()

Types:
MessagePackageRaw = nmessage_package()
nmessage_package() = aton()

This function runs the measurement on all the official codecs; pretty, compact, ber, per and erlang.

76 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_codec_mstonel

megaco_codec_mstonel

Erlang module

This module implements the mstonel tool, a simple megaco codec-based performance tool.
The results, the mstone value(s), are written to stdout.
Note that this module is not included in the runtime part of the application.

Exports

start() -> void()
start(MessagePackage) -> void()
start(MessagePackage, Factor) -> void()
Types.
MessagePackage = nessage_package()
nmessage_package() = aton()
Factor() = integer() >0

Thisfunction startsthe mstonel performance test with all codec configs. Fact or (defaultsto 1) processes are started
for every supported codec config.

Each process encodes and decodes their messages. The number of messages processed in total (for all processes) is
the mstone value.

start flex() -> void()
start flex(MessagePackage) -> void()
start flex(MessagePackage, Factor) -> void()
Types:
MessagePackage = nmessage_package()
message_package() = aton()
Factor() = integer() >0
This function starts the mstonel performance test with only the flex codec configs (i.e. pr et t y and conpact with
f I ex). The same number of processes are started as when running the standard test (using thest ar t / 0, 1 function).

Each process encodes and decodes their messages. The number of messages processed in total (for all processes) is
the mstone value.

start_only drv() -> void()
start only drv(MessagePackage) -> void()
start_only drv(MessagePackage, Factor) -> void()
Types:
MessagePackage = nessage_package()
nmessage_package() = aton()
Factor() = integer() >0

Thisfunction startsthe mstonel performancetest with only thedriver using codec configs(i.e. pr et t y and conpact
withf | ex, and ber and per withdri ver ander| ang with conpr essed). The same humber of processes are

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 77

megaco_codec_mstonel

started as when running the standard test (using the st art / 0, 1 function). Each process encodes and decodes their
messages. The number of messages processed in total (for all processes) isthe mstone value.

start no drv() -> void()
start _no _drv(MessagePackage) -> void()
start no drv(MessagePackage, Factor) -> void()
Types:
MessagePackage = nessage_package()
nmessage_package() = aton()
Factor() = integer() >0
This function starts the mstonel performance test with codec configs not using any drivers (i.e. pretty and
conpact without f | ex, ber and per without dri ver and er | ang without conpr essed). The same number

of processes are started as when running the standard test (using the st art / 0, 1 function). Each process encodes
and decodes their messages. The number of messages processed in total (for al processes) isthe mstone value.

78 | Ericsson AB. All Rights Reserved.: Megaco/H.248

megaco_codec_mstone2

megaco_codec_mstone2

Erlang module

This module implements the mstone2 tool, a simple megaco codec-based performance tool.
The results, the mstone value(s), are written to stdout.
Note that this module is not included in the runtime part of the application.

Exports

start() -> void()
start(MessagePackage) -> void()
Types:
MessagePackage = nessage_package()
nmessage_package() = aton()
This function starts the mstone2 performance test with all codec configs. Processes are created dynamically. Each

process make one run through their messages (decoding and encoding messages) and then exits. When one process
exits, anew is created with the same codec config and set of messages.

The number of messages processed in total (for all processes) is the mstone value.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 79

megaco_codec_transform

megaco_codec_transform

Erlang module

This module implements a simple megaco message transformation utility.
Note that this module is not included in the runtime part of the application.

Exports

export messages() -> void()
export messages(MessagePackage) -> void()
Types:
MessagePackage = atom()
Export the messages in the MessagePackage (defaultist i ne_t est).

The output produced by this function is a directory structure with the following structure:

<message package>/pretty/<message-files>
compact/<message-files>
per/<message-files>
ber/<message-files>
erlang/<message-files>

80 | Ericsson AB. All Rights Reserved.: Megaco/H.248

	Megaco/H.248
	Megaco/H.248 Users Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Architecture
	Network view
	General
	Single node config
	Distributed config
	Message round-trip call flow

	Running the stack
	Starting
	MGC startup call flow
	MG startup call flow
	Configuring the Megaco stack
	Initial configuration
	Changing the configuration
	The transaction sender
	Segmentation of transaction replies

	Internal form and its encodings
	Internal form of messages
	The different encodings
	Configuration of Erlang distribution encoding module
	Configuration of text encoding module(s)
	Configuration of binary encoding module(s)
	Handling megaco versions
	Encoder callback functions

	Transport mechanisms
	Callback interface
	Examples

	Implementation examples
	A simple Media Gateway Controller
	A simple Media Gateway

	Megaco mib
	Intro
	Statistics counters
	Distribution

	Performance comparison
	Comparison of encoder/decoders
	System performance characteristics
	Description of encoders/decoders
	Setup
	Summary

	Testing and tools
	Tracing
	Measurement and transformation
	Requirement
	Meas results
	Instruction
	Message Transformation
	Measurement(s)
	Message package file

	Notes
	Binary codecs
	Included test messages
	Measurement tool directory name

	Reference Manual
	megaco
	start/0
	stop/0
	start_user/2
	stop_user/1
	user_info/1
	user_info/2
	update_user_info/3
	conn_info/1
	conn_info/2
	update_conn_info/3
	system_info/0
	system_info/1
	info/0
	connect/4
	connect/5
	disconnect/2
	call/3
	cast/3
	encode_actions/3
	token_tag2string/1
	token_tag2string/2
	token_tag2string/3
	cancel/2
	process_received_message/4
	process_received_message/5
	receive_message/4
	receive_message/5
	parse_digit_map/1
	eval_digit_map/1
	eval_digit_map/2
	report_digit_event/2
	test_digit_event/2
	encode_sdp/1
	decode_sdp/1
	versions1/0
	versions2/0
	print_version_info/0
	print_version_info/1
	enable_trace/2
	disable_trace/0
	set_trace/1
	get_stats/0
	get_stats/1
	get_stats/1
	get_stats/2
	reset_stats/0
	reset_stats/1
	test_request/5
	test_reply/5

	megaco_edist_compress
	Module:encode/2
	Module:decode/2

	megaco_encoder
	Module:encode_message/3
	Module:decode_message/3
	Module:decode_mini_message/3
	Module:encode_transaction/3
	Module:encode_action_requests/3
	Module:encode_action_reply/3

	megaco_transport
	Module:send_message/2
	Module:send_message/3
	Module:resend_message/2

	megaco_tcp
	start_transport/0
	listen/2
	connect/2
	close/1
	socket/1
	send_message/2
	block/1
	unblock/1
	upgrade_receive_handle/1
	get_stats/0
	get_stats/1
	get_stats/2
	reset_stats/0
	reset_stats/1

	megaco_udp
	start_transport/0
	open/2
	close/2
	socket/1
	create_send_handle/3
	send_message/2
	block/1
	unblock/1
	upgrade_receive_handle/2
	get_stats/0
	get_stats/1
	get_stats/2
	reset_stats/0
	reset_stats/1

	megaco_user
	handle_connect/2
	handle_connect/3
	handle_disconnect/3
	handle_syntax_error/3
	handle_syntax_error/4
	handle_message_error/3
	handle_message_error/4
	handle_trans_request/3
	handle_trans_request/4
	handle_trans_long_request/3
	handle_trans_long_request/4
	handle_trans_reply/4
	handle_trans_reply/5
	handle_trans_ack/4
	handle_trans_ack/5
	handle_unexpected_trans/3
	handle_unexpected_trans/4
	handle_trans_request_abort/4
	handle_trans_request_abort/5
	handle_segment_reply/5
	handle_segment_reply/6

	megaco_flex_scanner
	start/0
	stop/1
	is_reentrant_enabled/0
	is_scanner_port/2
	scan/2

	megaco_codec_meas
	start/0
	start/1

	megaco_codec_mstone1
	start/0
	start/1
	start/2
	start_flex/0
	start_flex/1
	start_flex/2
	start_only_drv/0
	start_only_drv/1
	start_only_drv/2
	start_no_drv/0
	start_no_drv/1
	start_no_drv/2

	megaco_codec_mstone2
	start/0
	start/1

	megaco_codec_transform
	export_messages/0
	export_messages/1

